login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128734
Number of LD's in all skew Dyck paths of semilength n.
2
0, 0, 0, 1, 8, 48, 261, 1358, 6907, 34684, 172850, 857389, 4240442, 20933422, 103221134, 508623877, 2505298946, 12338127048, 60761615904, 299256606347, 1474086307696, 7262524940428, 35789196572489, 176410731649052
OFFSET
0,5
COMMENTS
A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps.
LINKS
E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
FORMULA
a(n) = Sum_{k=0..floor((n-1)/2)} k*A128733(n,k), for n >= 1.
G.f.: z^2*g^2*(g-1)/(1-3*z+2*z^2-3*z^2*g^2), where g = 1 + z*g^2 + z*(g-1) = (1 - z - sqrt(1 - 6*z + 5*z^2))/(2*z).
a(n) ~ 5^(n-1/2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: +2*(3*n-20)*(n-3)*(n+1)*a(n) +(-39*n^3+362*n^2-739*n+300)*a(n-1) +8*(n-2) *(6*n^2-49*n+75) *a(n-2) -5*(n-2)*(n-3)*(3*n-17)*a(n-3)=0. - R. J. Mathar, Jun 17 2016
EXAMPLE
a(4)=8 because we have UDUUUD(LD), UUUD(LD)UD, UUDUUD(LD), UUUUD(LD)D, UUUDUD(LD), UUUUDD(LD), UUUUDL(LD) and UUUUD(LD)L (the LD's are shown between parentheses; the other 28 skew Dyck paths of semilength 4 contain no LD).
MAPLE
g:=(1-z-sqrt(1-6*z+5*z^2))/2/z: G:=z^2*g^2*(g-1)/(1-3*z+2*z^2-3*z^2*g^2): Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=0..26);
MATHEMATICA
CoefficientList[Series[x^2*((1-x-Sqrt[1-6*x+5*x^2])/2/x)^2*((1-x-Sqrt[1-6*x+5*x^2])/2/x-1)/(1-3*x+2*x^2-3*x^2*((1-x-Sqrt[1-6*x+5*x^2])/2/x)^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0], Vec(x^2*((1-x-sqrt(1-6*x+5*x^2))/2/x)^2*((1-x-sqrt(1-6*x+5*x^2))/2/x-1)/(1-3*x+2*x^2-3*x^2*((1-x-sqrt(1-6*x+5*x^2))/2/x)^2))) \\ G. C. Greubel, Mar 20 2017
CROSSREFS
Cf. A128733.
Sequence in context: A285063 A026761 A026706 * A006321 A371620 A295047
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 31 2007
STATUS
approved