OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-31,30).
FORMULA
From Hieronymus Fischer, Jun 25 2007: (Start)
a(n) = Sum_{0<=i,j,k,<=n, i+j+k=n} 2^i*3^j*5^k.
a(n) = (2^(n+3) + 5^(n+2) - 3^(n+3))/6. (End)
a(n) = ((5^n - 2^n)/3 - (3^n - 2^n))/2 , n >= 2. - Zerinvary Lajos, Jun 05 2009
From Vincenzo Librandi, Mar 15 2011: (Start)
a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3), n >= 3.
a(n) = 8*a(n-1) - 15*a(n-2) + 2^n, a(0)=1, a(1)=10. (End)
E.g.f.: exp(2*x)*(8 - 27*exp(x) + 25*exp(3*x))/6. - Stefano Spezia, Sep 27 2023
MATHEMATICA
CoefficientList[ Series[ 1/((1 - 2x)(1 - 3x)(1 - 5x)), {x, 0, 20} ], x ]
LinearRecurrence[{10, -31, 30}, {1, 10, 69}, 20] (* Harvey P. Dale, Oct 05 2014 *)
PROG
(Sage) [((5^n - 2^n)/3-(3^n - 2^n))/2 for n in range(2, 22)] # Zerinvary Lajos, Jun 05 2009
(PARI) Vec(1/((1-2*x)*(1-3*x)*(1-5*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved