login
A081280
Binomial transform of Chebyshev coefficients A006974.
3
1, 10, 69, 398, 2057, 9858, 44685, 194022, 813969, 3319866, 13224789, 51635070, 198148761, 749016882, 2794021533, 10300389462, 37575535905, 135782112618, 486470994021, 1729358969454, 6104068084521, 21404982017250, 74609825192109
OFFSET
0,2
FORMULA
a(n) = (n^4+24*n^3+164*n^2+378*n+243) * 3^(n-5).
a(n) = 15*a(n-1) -90*a(n-2) +270a*(n-3) -405*a(n-4) +243*a(n-5).
G.f.: (1-2*x)*(1-x)^3/(1-3*x)^5.
MATHEMATICA
CoefficientList[Series[(1 - 2 x) (1 - x)^3 / (1 - 3 x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2013 *)
LinearRecurrence[{15, -90, 270, -405, 243}, {1, 10, 69, 398, 2057}, 30] (* Harvey P. Dale, May 05 2019 *)
PROG
(Magma) [(n^4+24*n^3+164*n^2+378*n+243)*3^(n-5): n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 16 2003
STATUS
approved