login
Binomial transform of Chebyshev coefficients A006974.
3

%I #16 Aug 23 2024 20:39:30

%S 1,10,69,398,2057,9858,44685,194022,813969,3319866,13224789,51635070,

%T 198148761,749016882,2794021533,10300389462,37575535905,135782112618,

%U 486470994021,1729358969454,6104068084521,21404982017250,74609825192109

%N Binomial transform of Chebyshev coefficients A006974.

%H Vincenzo Librandi, <a href="/A081280/b081280.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (15,-90,270,-405,243).

%F a(n) = (n^4+24*n^3+164*n^2+378*n+243) * 3^(n-5).

%F a(n) = 15*a(n-1) -90*a(n-2) +270a*(n-3) -405*a(n-4) +243*a(n-5).

%F G.f.: (1-2*x)*(1-x)^3/(1-3*x)^5.

%t CoefficientList[Series[(1 - 2 x) (1 - x)^3 / (1 - 3 x)^5, {x, 0, 40}], x] (* _Vincenzo Librandi_, Aug 07 2013 *)

%t LinearRecurrence[{15,-90,270,-405,243},{1,10,69,398,2057},30] (* _Harvey P. Dale_, May 05 2019 *)

%o (Magma) [(n^4+24*n^3+164*n^2+378*n+243)*3^(n-5): n in [0..25]]; // _Vincenzo Librandi_, Aug 07 2013

%Y Cf. A007051, A006234, A081279, A081281.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 16 2003