login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007063 Main diagonal of Kimberling's expulsion array (A035486).
(Formerly M2387)
16
1, 3, 5, 4, 10, 7, 15, 8, 20, 9, 18, 24, 31, 14, 28, 22, 42, 35, 33, 46, 53, 6, 36, 23, 2, 55, 62, 59, 76, 65, 54, 11, 34, 48, 70, 79, 99, 95, 44, 97, 58, 84, 25, 13, 122, 83, 26, 115, 82, 91, 52, 138, 67, 90, 71, 119, 64, 37, 81, 39, 169, 88, 108, 141, 38, 16, 146, 41, 21 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
From Clark Kimberling Aug 05 2022, Oct 24 2022: (Start)
Eight such arrays (including A035486 and A356026) have been coded by Peter J. C. Moses using
R for "right side of expelled (number)",
L for "left side",
I for "inner", i.e., next to expelled, and
O for "outer", i.e., farthest from expelled. For example, the array A035486 (and diagonal A007063) are coded as RILI. For the eight codes see Example and Mathematica. It is conjectured that six of the eight diagonal sequences are permutations of the positive integers. (End)
REFERENCES
D. Gale, Tracking the Automatic Ant: And Other Mathematical Explorations, ch. 5, p. 27. Springer, 1998.
R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004; Section E35, p. 359.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..100000
Enrique Pérez Herrero, Kimberling's Expulsion Array
Clark Kimberling, Problem 1615, Crux Mathematicorum, Vol. 17 (2) 44 1991; Solution to Problem 1615, Crux Mathematicorum, Vol. 18, March 1992, pp. 82-83.
Eric Weisstein's World of Mathematics, Kimberling Sequence
FORMULA
a(theta(k)) = 3*theta(k)-(k+1), where theta(k) = Sum_{i=0..k-1} 2^floor(i/3). - Enrique Pérez Herrero, Feb 23 2010
From Connor Brown, May 05 2023 to Feb 01 2024: (Start)
14 sets of values which predictably appear within the sequence have been found, 1 by Richard Guy (1992) and 13 by Connor Brown (2023). Below, k is any positive integer unless otherwise specified.
a(3*2^k-3) = 9*2^k - 3*k - 10. (Guy, 1992)
a(5*2^k-3) = 15*2^k - 3*k - 12.
a(4*2^k-3) = 12*2^k - 3*k - 11.
a((20/3)*2^k-(4/3)) = 20*2^k - 3*k - 13 for odd k.
a((16/3)*2^k-(4/3)) = 16*2^k - 3*k - 12 for even k.
a((40/7)*2^k-(3/7)) = (120/7)*2^k - 3*k - (93/7) for k==1 (mod 3).
a((16/5)*2^k-(2/5)) = (48/5)*2^k - 3*k - (46/5) for k==1 (mod 4).
a((12/5)*2^k-(2/5)) = (36/5)*2^k - 3*k - (41/5) for k==0 (mod 4).
a((48/13)*2^k+(8/13)) = (144/13)*2^k - 3*k - (145/13) for k==1 (mod 12).
a((64/13)*2^k+(8/13)) = (192/13)*2^k - 3*k - (158/13) for k==3 (mod 12).
a((80/13)*2^k+(8/13)) = (240/13)*2^k - 3*k - (171/13) for k==8 (mod 12).
a((64/9)*2^k+(7/9)) = (64/3)*2^k - 3*k - (35/3) for k==1 (mod 6).
a((80/9)*2^k+(7/9)) = (80/3)*2^k - 3*k - (38/3) for k==4 (mod 6).
a((64/15)*2^k+(7/15)) = (64/5)*2^k - 3*k - (63/5) for k>4, k==1 (mod 4).
(End)
EXAMPLE
The eight diagonals described in Comments:
A007053 = RILI = (1, 3, 5, 4, 10, 7, 15, 8, 20, 9, 18, 24, 31, 14, ... )
A282348 = ROLO = (1, 3, 5, 2, 8, 9, 4, 10, 7, 20, 12, 24, 14, 23, ... )
A356376 = LORO = (1, 3, 5, 6, 4, 11, 12, 9, 13, 15, 23, 7, 27, 16, ... )
A356026 = LIRI = (1, 3, 5, 7, 4, 12, 10, 17, 6, 22, 15, 19, 24, 33, ... )
A356777 = ROLI = (1, 3, 5, 4, 8, 6, 10, 15, 2, 9, 13, 26, 11, 12, ... )
A356778 = RILO = (1, 3, 5, 6, 2, 10, 9, 15, 8, 20, 19, 7, 21, 31, ... )
A356779 = LORI = (1, 3, 5, 7, 4, 12, 11, 17, 10, 22, 21, 9, 23, 33, ... )
A356780 = LIRO = (1, 3, 5, 6, 4, 11, 13, 2, 7, 14, 24, 9, 10, 31, ... )
MATHEMATICA
K[i_, j_] := i + j - 1 /; (j >= 2 i - 3);
K[i_, j_] := K[i - 1, i - j/2 - 1] /; (EvenQ[j] && (j < 2 i - 3));
K[i_, j_] := K[i - 1, i + (j - 1)/2] /; (OddQ[j] && (j < 2 i - 3));
A007063[i_] := A007063[i] = K[i, i]; SetAttributes[A007063, Listable] (* Enrique Pérez Herrero, Feb 09 2010 *)
(* Next program generates the 8 arrays with highlighted diagonal sequences. *)
len = 1000;
roli = Join[{{1}},
NestList[
Join[#[[Riffle[Range[Length[#], (Length[#] + 3)/2, -1],
Range[(Length[#] - 1)/2, 1, -1]]]],
Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4}, len]];
rili = Join[{{1}},
NestList[Join[#[[Riffle[Range[(Length[#] + 3)/2, Length[#]],
Range[(Length[#] - 1)/2, 1, -1]]]],
Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4},
len]]; (*A007063*)
rolo = Join[{{1}},
NestList[Join[#[[Riffle[Range[Length[#], (Length[#] + 3)/2, -1],
Range[1, (Length[#] - 1)/2]]]],
Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4},
len]]; (*A282348*)
rilo = Join[{{1}},
NestList[Join[#[[Riffle[Range[(Length[#] + 3)/2, Length[#]],
Range[1, (Length[#] - 1)/2, 1]]]],
Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4}, len]];
lori = Join[{{1}},
NestList[
Join[#[[Riffle[Range[1, (Length[#] - 1)/2],
Range[(Length[#] + 3)/2, Length[#]]]]],
Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4}, len]];
liri = Join[{{1}},
NestList[Join[#[[Riffle[Range[(Length[#] - 1)/2, 1, -1],
Range[(Length[#] + 3)/2, Length[#]]]]],
Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4},
len]]; (*A356026*)
loro = Join[{{1}},
NestList[Join[#[[Riffle[Range[1, (Length[#] - 1)/2],
Range[Length[#], (Length[#] + 3)/2, -1]]]],
Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4}, len]];
liro = Join[{{1}},
NestList[
Join[#[[Riffle[Range[(Length[#] - 1)/2, 1, -1],
Range[Length[#], (Length[#] + 3)/2, -1]]]],
Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4}, len]];
(Map[{#, Take[Flatten[Map[Take[#, {(Length[#] + 1)/2}] &, #]], 200] &[
ToExpression[#]]} &, {"rolo", "rilo", "roli", "rili", "loro",
"liro", "lori", "liri"}]) // ColumnForm
rows = 10; Map[{#,
Grid[Map[Map[StringPadLeft[ToString[#], 2] &, #] &,
Take[ToExpression[#], rows]],
Frame -> {None, None, Map[{#, #} -> True &, Range[rows]]},
FrameStyle -> Directive[Red]]} &, {"rolo", "rilo", "roli", "rili",
"loro", "liro", "lori", "liri"}]
(* Peter J. C. Moses, Oct 24 2022; Clark Kimberling, Oct 24 2022 *)
PROG
(PARI) K(i, j) = { my(i1, j1); i1=i; j1=j;
while(j1<(2*i1-3), if(j1%2, j1=i1+((j1-1)/2), j1=i1-((j1+2)/2)); i1--; );
return(i1+j1-1); }
A007063(i)=K(i, i); \\ Enrique Pérez Herrero, Feb 21 2010
CROSSREFS
Sequence in context: A294673 A347128 A078439 * A335500 A127397 A284048
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Dec 23 1999
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 09:28 EDT 2024. Contains 371967 sequences. (Running on oeis4.)