login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356379
Main diagonal of the LORI variant of the array A035486; this is one of eight such sequences discussed in A007063.
4
1, 3, 5, 7, 4, 12, 11, 17, 10, 22, 21, 9, 23, 33, 8, 27, 16, 44, 26, 18, 30, 55, 41, 35, 14, 25, 65, 20, 67, 78, 43, 64, 49, 66, 76, 61, 85, 101, 60, 100, 32, 62, 111, 52, 68, 124, 80, 93, 86, 102, 92, 131, 115, 51, 110, 58, 77, 73, 72, 15, 134, 171, 29, 151
OFFSET
1,2
COMMENTS
Conjecture: every positive integer except 2 occurs exactly once.
MATHEMATICA
lori = Join[{{1}}, NestList[Join[#[[Riffle[Range[1, (Length[#] - 1)/2],
Range[(Length[#] + 3)/2, Length[#]]]]],
Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4}, 200]];
s = Map[{#, Take[Flatten[Map[Take[#, {(Length[#] + 1)/2}] &, #]], 150] &[
ToExpression[#]]} &, {"lori"}];
Last[First[s]] (* A356379 *)
(* Peter J. C. Moses, Jul 26 2022 *)
(* The next program generates the LORI array. *)
len = 8; lori = Join[{{1}}, NestList[Join[#[[Riffle[Range[1, (Length[#] - 1)/2],
Range[(Length[#] + 3)/2, Length[#]]]]],
Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4}, len]];
Grid[Map[Flatten, Transpose[{#, Range[3 Range[Length[#]] - 1,
4 (Length[#] - 2) - 1 + Range[Length[#]]]}]] &[lori]]
(* Peter J. C. Moses, Aug 02 2022 *)
CROSSREFS
Sequence in context: A064537 A023899 A356026 * A324712 A279321 A254863
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 21 2022
STATUS
approved