login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173745
Numbers n such that tau(phi(n)) = sigma(rad(n)).
1
1, 8, 9, 25, 49, 216, 288, 324, 675, 1125, 1331, 1458, 1568, 2000, 2744, 3200, 3645, 6125, 6144, 8575, 9604, 9801, 14336, 30976, 31250, 42592, 46875, 70304, 72171, 81000, 108000, 109375, 123201, 129600, 131769, 135000, 145800, 182250, 184832
OFFSET
1,2
COMMENTS
tau(phi(n)) = A000005(A000010(n)) = A062821(n).
sigma(rad(n)) = A000203(A007947(n)) = A048250(n).
LINKS
W. Sierpinski, Number Of Divisors And Their Sum, Monogr. Matemat. 42 (1964) chapter IV
FORMULA
{ n : A062821(n) = A048250(n) }.
EXAMPLE
For n=9, tau(phi(9)) = tau(6)=4 equals sigma(rad(9)) = sigma(3) = 4 which adds n=9 to the sequence.
MAPLE
with(numtheory):for n from 1 to 1500000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if tau(phi(n)) = sigma(t2) then print (n): else fi: od :
MATHEMATICA
Select[Range[200000], DivisorSigma[0, EulerPhi[#]] == DivisorSigma[1, Times @@ FactorInteger[#][[All, 1]]] & ] (* Jean-François Alcover, Sep 12 2011 *)
PROG
(Magma) [1] cat [m:m in [2..200000]|#Divisors(EulerPhi(m)) eq &+Divisors(&*PrimeDivisors(m))]; // Marius A. Burtea, Jul 10 2019
(PARI) isok(n) = numdiv(eulerphi(n)) == sigma(factorback(factorint(n)[, 1])); \\ Michel Marcus, Jul 10 2019
CROSSREFS
Sequence in context: A258400 A173336 A277925 * A305828 A322652 A041134
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 23 2010
EXTENSIONS
Unspecific references removed by R. J. Mathar, Mar 26 2010
STATUS
approved