The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173747 Square array T(n, k) = v(k, n)((1)), where v(n, q) = M*v(n-1, q), M = {{0, 1, 0}, {0, 0, 1}, {8*q^3, 6*q, 0}}, with v(0, q) = {1, 1, 1}, read by antidiagonals. 4
1, 1, 1, 1, 1, 1, 14, 1, 1, 1, 14, 76, 1, 1, 1, 92, 76, 234, 1, 1, 1, 196, 976, 234, 536, 1, 1, 1, 664, 5776, 4428, 536, 1030, 1, 1, 1, 1912, 16576, 54756, 13376, 1030, 1764, 1, 1, 1, 5552, 131776, 130248, 287296, 31900, 1764, 2786, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,7
LINKS
FORMULA
T(n, k) = v(k, n)((1)), where v(n, q) = M*v(n-1, q), M = {{0, 1, 0}, {0, 0, 1}, {8*q^3, 6*q, 0}}, with v(0, q) = {1, 1, 1} (square array).
T(n, k) = f(k, n+1), where f(n, q) = 6*q*f(n-2, q) + 8*q^3*f(n-3, q), and f(0,q) = f(1,q) = f(2,q) = 1 (square array). - G. C. Greubel, Jul 06 2021
EXAMPLE
Square array begins as:
1, 1, 1, 14, 14, 92, ...;
1, 1, 1, 76, 76, 976, ...;
1, 1, 1, 234, 234, 4428, ...;
1, 1, 1, 536, 536, 13376, ...;
1, 1, 1, 1030, 1030, 31900, ...;
1, 1, 1, 1764, 1764, 65232, ...;
Antidiagonal triangle begins as:
1;
1, 1;
1, 1, 1;
14, 1, 1, 1;
14, 76, 1, 1, 1;
92, 76, 234, 1, 1, 1;
196, 976, 234, 536, 1, 1, 1;
664, 5776, 4428, 536, 1030, 1, 1, 1;
1912, 16576, 54756, 13376, 1030, 1764, 1, 1, 1;
5552, 131776, 130248, 287296, 31900, 1764, 2786, 1, 1, 1;
MATHEMATICA
(* First program *)
M = {{0, 1, 0}, {0, 0, 1}, {8*q^3, 6*q, 0}};
v[0, q_] = {1, 1, 1};
v[n_, q_]:= v[n, q]= M.v[n-1, q];
T = Table[v[n, q][[1]], {n, 0, 20}, {q, 1, 21}];
Table[T[[n-k+1, k+1]], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jul 06 2021 *)
(* Second program *)
f[n_, q_]:= f[n, q]= If[n<3, 1, 6*q*f[n-2, q] + 8*q^3*f[n-3, q]];
T[n_, k_]:= f[k, n+1];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 06 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, q): return 1 if (n<3) else 6*q*f(n-2, q) + 8*q^3*f(n-3, q)
def T(n, k): return f(k, n+1)
flatten([[T(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 06 2021
CROSSREFS
Sequence in context: A262705 A232210 A040199 * A040200 A040198 A040197
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 23 2010
EXTENSIONS
Edited by G. C. Greubel, Jul 06 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 12:09 EDT 2024. Contains 372773 sequences. (Running on oeis4.)