login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262705
Triangle: Newton expansion of C(n,m)^4, read by rows.
2
1, 0, 1, 0, 14, 1, 0, 36, 78, 1, 0, 24, 978, 252, 1, 0, 0, 4320, 8730, 620, 1, 0, 0, 8460, 103820, 46890, 1290, 1, 0, 0, 7560, 581700, 1159340, 185430, 2394, 1, 0, 0, 2520, 1767360, 13387570, 8314880, 595476, 4088, 1, 0, 0, 0, 3087000, 85806000, 170429490, 44341584, 1642788, 6552, 1
OFFSET
0,5
COMMENTS
Triangle here T_4(n,m) is such that C(n,m)^4 = Sum_{j=0..n} C(n,j)*T_4(j,m).
Equivalently, lower triangular matrix T_4 such that
|| C(n,m)^4 || = A202750 = P * T_4 = A007318 * T_4.
T_4(n,m) = 0 for n < m and for 4*m < n.
Refer to comment to A262704.
Example:
C(x,2)^4 = x^4*(x-1)^4 /16 = 1*C(x,2) + 78*C(x,3) + 978*C(x,4) + 4320*C(x,5) + 8460*C(x,6) + 7560*C(x,7) + 2520*C(x,8);
C(5,2)^4 = C(5,3)^4 = 10000 = 1*C(5,2) + 78*C(5,3) + 978*C(5,4) + 4320*C(5,5) = 1*C(5,3) + 252*C(5,4) + 8730*C(5,5).
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
FORMULA
T_4(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^4.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above, then T_4(n,m) = n! / (m!)^4 * S(m,m)(4,n).
EXAMPLE
Triangle starts:
[1];
[0, 1];
[0, 14, 1];
[0, 36, 78, 1];
[0, 24, 978, 252, 1];
[0, 0, 4320, 8730, 620, 1];
[0, 0, 8460, 103820, 46890, 1290, 1];
MATHEMATICA
T4[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^4, {j, 0, n}]; Table[T4[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
PROG
(MuPAD)
// as a function
T_4:=(n, m)->_plus((-1)^(n-j)*binomial(n, j)*binomial(j, m)^4 $ j=0..n):
// as a matrix h x h
_P:=h->matrix([[binomial(n, m) $m=0..h]$n=0..h]):
_P_4:=h->matrix([[binomial(n, m)^4 $m=0..h]$n=0..h]):
_T_4:=h->_P(h)^-1*_P_4(h):
(Magma) [&+[(-1)^(n-j)*Binomial(n, j)*Binomial(j, m)^4: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
(PARI) T_4(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n, j)*binomial(j, m)^4), ", ")); print())} \\ Colin Barker, Oct 01 2015
CROSSREFS
Row sums are, by definition, the inverse binomial transform of A005260.
Second diagonal (T_4(n+1,n)) is A058895(n+1).
Column T_4(n,2) is A122193(4,n).
Cf. A109983 (transpose of), A262704, A262706.
Sequence in context: A228304 A002393 A185284 * A232210 A040199 A173747
KEYWORD
nonn,tabl,easy
AUTHOR
Giuliano Cabrele, Sep 30 2015
STATUS
approved