login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173748
Numbers k such that phi(phi(k)) = sigma(rad(k)).
1
1, 108, 135, 196, 245, 297, 539, 810, 1008, 1176, 1575, 1782, 1917, 3056, 3213, 4464, 6897, 6944, 7560, 8820, 9450, 10017, 11502, 14229, 16632, 16821, 18009, 18336, 19278, 19404, 20320, 24255, 25400, 25823, 27504, 28677, 33250, 33480, 41382
OFFSET
1,2
COMMENTS
rad(k) is the product of the primes dividing k (A007947), phi(k) is the Euler totient function (A000010), sigma(k) is the sum of divisors of k (A000203).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
LINKS
Wacław Sierpiński, Number Of Divisors And Their Sum, Elementary theory of numbers, Warszawa, 1964.
FORMULA
k such that A000010(A000010(k)) = A000203(A007947(k)).
EXAMPLE
for n=108,phi(108) = 36,phi(36)=12, rad(108)=6 and sigma(6) = 12
MAPLE
with(numtheory): for n from 1 to 1000000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if phi(phi(n)) = sigma(t2)then print (n): else fi: od :
MATHEMATICA
Select[Range[50000], EulerPhi[EulerPhi[#]]==DivisorSigma[1, Times@@ FactorInteger[ #][[All, 1]]]&] (* Harvey P. Dale, Aug 21 2016 *)
PROG
(Magma) [1] cat [m:m in [2..42000]|EulerPhi((EulerPhi(m))) eq &+Divisors(&*PrimeDivisors(m))]; // Marius A. Burtea, Jul 10 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 23 2010
STATUS
approved