login
A274118
(1+e)-sigma betrothed numbers.
2
108, 140, 195, 1050, 1925, 8892, 16587, 312620, 549219, 587460, 1057595, 1279950, 2576945, 5088650, 6446325, 7460004, 7875450, 10925915, 13922100, 16381925, 22559060, 26502315, 29864120, 30809415, 31213899, 41137620, 84854315, 89446860, 102019644, 114859884
OFFSET
1,1
COMMENTS
Members of a pair (m,n) such that (1+e)-sigma(m)=(1+e)-sigma(n)=m+n+1, where (1+e)-sigma = A051378.
So far, 108 is the only fixed point of the transform n -> (1+e)sigma(n)-n-1.
LINKS
EXAMPLE
(1+e)-sigma(140) - 140 - 1 = 336 - 140 - 1 = 195 and (1+e)-sigma(195) - 195 - 1 = 336 - 195 - 1 = 140.
MAPLE
with(numtheory): T:=proc(n) local a, d, p, e, s, sp; a:=1;
for d in ifactors(n)[2] do p:=op(1, d); e:= op(2, d); sp:=1;
for s in divisors(e) do sp:=sp+p^s; od: a:=a*sp; od: a; end:
P:=proc(q) local n, x, y; for n from 2 to q do x:=T(n)-n-1; y:=T(x)-x-1;
if n=y then print(n); fi; od; end: P(10^10);
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jun 10 2016
STATUS
approved