The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258400 Perfect powers m^k such that m, k and m+k are primes. 0
 8, 9, 25, 32, 121, 289, 841, 1681, 2048, 3481, 5041, 10201, 11449, 18769, 22201, 32041, 36481, 38809, 51529, 57121, 72361, 78961, 96721, 120409, 131072, 175561, 185761, 212521, 271441, 323761, 358801, 380689, 410881, 434281, 654481, 674041, 683929, 734449 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Necessarily either m or k = 2, thus if a(n) is even, it is a power of 2 with odd prime exponent, otherwise (if a(n) is odd), it is a square of odd prime. For each term m^k, there will be another k^m. a(3), a(5), a(11) are of the form n! + 1. Let F(m,k) = m*k, such that m^k = a(n), so A108605 is a subsequence of F. For example a(1) = 2^3 and F(2,3) = A108605(1). LINKS EXAMPLE a(1) = 8, because 8 = 2^3 and 2+3 = 5. a(4) = 32, because 32 = 2^5 and 2+5 = 7. a(5) = 121, because 121 = 11^2 and 11+2 = 13. a(25) = 131072, because 131072 = 2^17 and 2+17 = 19. MATHEMATICA SmallestDivisor[n_] := If[n == 1, 1, Divisors[n][]]; perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; ppl = Select[Range, perfectPowerQ]; base[n_] := ppl[[n]]^(1/exp[n]); exp[n_] := SmallestDivisor[GCD @@ FactorInteger[ppl[[n]]][[All, 2]] ]; pp2l = Table[ {base[n], exp[n]}, {n, Length[ppl]}]; p[n_] := pp2l[[n]][]; q[n_] := pp2l[[n]][]; lt = Select[Range[Length[pp2l]], PrimeQ[p[#]] && PrimeQ[q[#]] && PrimeQ[p[#] + q[#]] &]; ppl[[lt]] Select[Range[10^6], Length[f = FactorInteger@ #] == 1 && PrimeQ@ f[[1, 2]] && PrimeQ@ Total@ f[] &] (* Giovanni Resta, Jun 23 2015 *) CROSSREFS Subsequence of A001597, A000961. Cf. A000079, A001248, A108605, A109611. Sequence in context: A114130 A130100 A226230 * A173336 A277925 A173745 Adjacent sequences:  A258397 A258398 A258399 * A258401 A258402 A258403 KEYWORD nonn AUTHOR Carlos Eduardo Olivieri, May 28 2015 EXTENSIONS a(28)-a(38) from Giovanni Resta, Jun 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 17:00 EDT 2021. Contains 343586 sequences. (Running on oeis4.)