login
A108605
Semiprimes with prime sum of factors: twice the lesser of the twin prime pairs.
17
6, 10, 22, 34, 58, 82, 118, 142, 202, 214, 274, 298, 358, 382, 394, 454, 478, 538, 562, 622, 694, 838, 862, 922, 1042, 1138, 1198, 1234, 1282, 1318, 1618, 1642, 1654, 1714, 1762, 2038, 2062, 2098, 2122, 2182, 2302, 2458, 2554, 2578, 2602, 2638, 2854, 2902
OFFSET
1,1
COMMENTS
All terms are even. (Cf. formula.)
The definition implies that the sum of factors is the sum over the prime factors with multiplicity, as in A001414. - R. J. Mathar, Nov 28 2008
The sum of factors of a semiprime pq is p+q, which can only be prime if {p, q} = {2, odd prime}. Requiring the sum to be prime then implies that the semiprime is twice the lesser of a twin prime pair. - M. F. Hasler, Apr 07 2015
Subsequence of A288814, each term being of the form A288814(p), where p is the greatest of a pair of twin primes. - David James Sycamore, Aug 29 2017
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n)=2*p, with p and 2+p twin primes: a(n)=2*A001359(n).
EXAMPLE
58=2*29 and 2+29 is prime.
MATHEMATICA
Select[Range[2, 3000, 2], !IntegerQ[Sqrt[ # ]]&&Plus@@(Transpose[FactorInteger[ # ]])[[2]]==2&&PrimeQ[Plus@@(Transpose[FactorInteger[ # ]])[[1]]]&]
Select[Range[2, 3000, 2], PrimeOmega[#]==PrimeNu[#]==2&&PrimeQ[Total[ FactorInteger[ #][[;; , 1]]]]&] (* Harvey P. Dale, Apr 10 2023 *)
PROG
(PARI) list(lim)=my(v=List(), p=2); forprime(q=3, lim\2+1, if(q-p==2, listput(v, 2*p)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 05 2017
CROSSREFS
Cf. A001358 semiprimes, A001359 lesser of twin primes, A101605 3-almost primes, A108606 semiprimes with prime sum of digits, A108607 intersection of A108605 and A108606.
Sequence in context: A082917 A001172 A339437 * A216049 A063765 A085712
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Jun 12 2005
EXTENSIONS
Changed division by 2 to multiplication by 2 in formula related to A001359. - R. J. Mathar, Nov 28 2008
STATUS
approved