

A216049


Consider the ordered Goldbach partitions of the even numbers m. Then a(n) is the least m which contains 2n1 such partitions composed of odd primes.


1



6, 10, 22, 34, 74, 106, 178, 142, 202, 358, 274, 386, 466, 514, 502, 802, 622, 746, 694, 914, 1322, 958, 1094, 1198, 1234, 1282, 1366, 1814, 1762, 1546, 1654, 1618, 1882, 2066, 1954, 2578, 2402, 2374, 2458, 2446, 2554, 2722, 3194, 2986, 2894, 2998, 2902, 3098
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS



LINKS



EXAMPLE

a(1) = 6, because 6 = {3+3} is the least m to contain one such partition.
a(2) = 10, because 10 = {3+7, 5+5, 7+3} is the least m to contain three such partitions.
a(3) = 22, because 22 = {3+19, 5+17, 11+11, 17+5, 19+3} is the least m to contain five such partitions.


MATHEMATICA

For[ls1=ls2={}; ct1=n=1, n<=1000, n++, For[ct2=0; i=1, i<=2n1, i++, If[OddQ[i] && PrimeQ[i] && PrimeQ[2ni], ct2++]]; AppendTo[ls1, ct2]; While[(pos=Position[ls1, ct1, 1, 1])!={}, AppendTo[ls2, 2*pos[[1, 1]]]; ct1+=2; ]]; ls2 (* J. Stauduhar, Sep 04 2012 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



