login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173739
Square array read by antidiagonals (n >= 1, k >= 2): T(n,k) = b(n,k) + b(k-1,n+1), where b(n,k) = ((1 + sqrt(k))^n - (1 - sqrt(k))^n)/(2*sqrt(k)).
1
2, 3, 3, 6, 4, 6, 13, 8, 8, 13, 30, 18, 14, 18, 30, 71, 46, 28, 28, 46, 71, 170, 122, 70, 48, 70, 122, 170, 409, 330, 192, 108, 108, 192, 330, 409, 986, 898, 558, 288, 202, 288, 558, 898, 986, 2379, 2450, 1652, 868, 466, 466, 868, 1652, 2450, 2379, 5742, 6690, 4934, 2728, 1338, 880, 1338, 2728, 4934, 6690, 5742
OFFSET
1,1
EXAMPLE
Square array begins:
n\k | 2 3 4 5 6 7 8 9 ...
-------------------------------------------------
1 | 2 3 6 13 30 71 170 409 ...
2 | 3 4 8 18 46 122 330 898 ...
3 | 6 8 14 28 70 192 558 1652 ...
4 | 13 18 28 48 108 288 868 2728 ...
5 | 30 46 70 108 202 466 1338 4264 ...
6 | 71 122 192 288 466 880 2174 6560 ...
7 | 170 330 558 868 1338 2174 4286 10888 ...
8 | 409 898 1652 2728 4264 6560 10888 21760 ...
...
MATHEMATICA
a[n_, q_] = ((1 + Sqrt[q])^n - (1 - Sqrt[q])^n)/(2*Sqrt[q]);
b = Table[Table[FullSimplify[ExpandAll[a[n, q]]], {n, 1, 11}], {q, 2, 12}];
c = (b + Transpose[b]);
Table[Table[c[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}] // Flatten
PROG
(Maxima)
b(n, q) := ((1 + sqrt(q))^n - (1 - sqrt(q))^n)/(2*sqrt(q))$
T(n, k) := b(n, k) + b(k - 1, n + 1)$
create_list(fullratsimp(T(k - 1, n - k + 3)), n, 1, 20, k, 2, n + 1);
/* Franck Maminirina Ramaharo, Jan 27 2019 */
CROSSREFS
Cf. A173738.
Sequence in context: A238305 A337660 A049990 * A062774 A372808 A266286
KEYWORD
nonn,easy,tabl
AUTHOR
Roger L. Bagula, Feb 23 2010
EXTENSIONS
Edited by Franck Maminirina Ramaharo, Jan 27 2019
STATUS
approved