login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176261
Triangle T(n,k) = A006130(k) - A006130(n) + A006130(n-k) read by rows.
1
1, 1, 1, 1, -2, 1, 1, -2, -2, 1, 1, -11, -11, -11, 1, 1, -20, -29, -29, -20, 1, 1, -56, -74, -83, -74, -56, 1, 1, -119, -173, -191, -191, -173, -119, 1, 1, -290, -407, -461, -470, -461, -407, -290, 1, 1, -650, -938, -1055, -1100, -1100, -1055, -938, -650, 1
OFFSET
0,5
COMMENTS
Row sums are s(n) = {1, 2, 0, -2, -31, -96, -341, -964, -2784, -7484, -20041, ...}, obey s(n) = 3*s(n-1) + 3*s(n-2) - 11*s(n-3) - 3*s(n-4) + 9*s(n-5) and have g.f. (1-x+3*x^3-9*x^2)/((1-x)*(1-x-3*x^2)^2).
FORMULA
T(n,k) = T(n,n-k).
T(n,k) = A006130(k) - A006130(n) + A006130(n-k), where A006130(n) = Sum_{j=0..n} binomial(n-j, j)*3^j. - G. C. Greubel, Nov 24 2019
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -2, 1;
1, -2, -2, 1;
1, -11, -11, -11, 1;
1, -20, -29, -29, -20, 1;
1, -56, -74, -83, -74, -56, 1;
1, -119, -173, -191, -191, -173, -119, 1;
1, -290, -407, -461, -470, -461, -407, -290, 1;
1, -650, -938, -1055, -1100, -1100, -1055, -938, -650, 1;
1, -1523, -2171, -2459, -2567, -2603, -2567, -2459, -2171, -1523, 1;
MAPLE
A176261 := proc(n, k)
A006130(k)-A006130(n)+A006130(n-k) ;
end proc; # R. J. Mathar, May 03 2013
MATHEMATICA
A006130[n_]:= Sum[Binomial[n-j, j]*3^j, {j, 0, n}]; T[n_, k_]:= A006130[k] - A006130[n] + A006130[n-k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Nov 24 2019 *)
PROG
(PARI) A006130(n) = sum(j=0, n, binomial(n-j, j)*3^j);
T(n, k) = A006130(k) -A006130(n) +A006130(n-k); \\ G. C. Greubel, Nov 24 2019
(Magma) A006130:= func< n | &+[Binomial(n-j, j)*3^j: j in [0..n]] >;
[A006130(k) -A006130(n) +A006130(n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 24 2019
(Sage)
def A006130(n): return sum(binomial(n-j, j)*3^j for j in (0..n))
[[A006130(k) -A006130(n) +A006130(n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 24 2019
CROSSREFS
Cf. A006130.
Sequence in context: A278218 A216031 A263985 * A264837 A264714 A375855
KEYWORD
sign,tabl,easy
AUTHOR
Roger L. Bagula, Apr 13 2010
STATUS
approved