This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176260 Periodic sequence: Repeat 5, 1. 2
 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Interleaving of A010716 and A000012. Also continued fraction expansion of (5+3*sqrt(5))/2. Also decimal expansion of 17/33. a(n) = A010686(n+1). Essentially first differences of A047264. Binomial transform of 5 followed by -A122803 without initial terms 1, -2. Inverse binomial transform of 5 followed by A007283 without initial term 3. Second inverse binomial transform of A168607 without initial term 3. Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 3*x^3 + 6*x^4 + 6*x^5 + ... is the o.g.f. for A008805. - Peter Bala, Mar 13 2015 LINKS Index entries for linear recurrences with constant coefficients, signature (0, 1). FORMULA a(n) = 3+2*(-1)^n. a(n) = a(n-2) for n > 1; a(0) = 5, a(1) = 1. a(n) = -a(n-1)+6 for n > 0; a(0) = 5. a(n) = 5*((n+1) mod 2)+(n mod 2). G.f.: (5+x)/(1-x^2). PROG (MAGMA) &cat[ [5, 1]: n in [0..52] ]; [ 3+2*(-1)^n: n in [0..104] ]; CROSSREFS Cf. A010716 (all 5's sequence), A000012 (all 1's sequence), A090550 (decimal expansion of (5+3*sqrt(5))/2), A010686 (repeat 1, 5), A047264 (congruent to 0 or 5 mod 6), A122803 (powers of -2), A007283 (3*2^n), A168607 (3^n+2), A008805. Sequence in context: A144432 A010686 A021070 * A098190 A050349 A083528 Adjacent sequences:  A176257 A176258 A176259 * A176261 A176262 A176263 KEYWORD cofr,cons,easy,nonn,mult AUTHOR Klaus Brockhaus, Apr 13 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 07:58 EDT 2018. Contains 316307 sequences. (Running on oeis4.)