OFFSET
0,1
COMMENTS
Second bisection is A134752.
It appears that if s(n) is a first order rational sequence of the form s(1)=5, s(n)= (2*s(n-1)+1)/(s(n-1)+2),n>1, then s(n)= a(n)/(a(n)-4), n>1. - Gary Detlefs, Nov 16 2010
Mahler exhibits this sequence with n>=1 as a proof that there exists an infinite number of x coprime to 3, such that x belongs to A125293 and x^2 belongs to A005836. - Michel Marcus, Nov 12 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Gennady Eremin, Arithmetization of well-formed parenthesis strings. Motzkin Numbers of the Second Kind, arXiv:2012.12675 [math.CO], 2020.
Kurt Mahler, The representation of squares to the base 3, Acta Arith. Vol. 53, Issue 1 (1989), p. 99-106.
Index entries for linear recurrences with constant coefficients, signature (4,-3).
FORMULA
a(n) = 3*a(n-1) - 4, a(0) = 3.
a(n+1) - a(n) = A008776(n).
a(n+2) - a(n) = A005051(n).
G.f.: (3 - 7*x)/((1 - x)*(1 - 3*x)).
a(n) = 4*a(n-1) - 3*a(n-2), a(0) = 3, a(1) = 5. - Vincenzo Librandi, Feb 06 2013
E.g.f.: exp(3*x) + 2*exp(x). - Elmo R. Oliveira, Nov 09 2023
MAPLE
MATHEMATICA
CoefficientList[Series[(3 - 7 x)/((1-x) (1-3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 06 2013 *)
NestList[3 # - 4 & , 3, 25] (* Bruno Berselli, Feb 06 2013 *)
PROG
(Magma) [3^n+2: n in [0..30]];
(PARI) a(n)=3^n+2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 01 2009
EXTENSIONS
Edited by Klaus Brockhaus, Apr 13 2010
Further edited by N. J. A. Sloane, Aug 10 2010
STATUS
approved