login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168607
a(n) = 3^n + 2.
14
3, 5, 11, 29, 83, 245, 731, 2189, 6563, 19685, 59051, 177149, 531443, 1594325, 4782971, 14348909, 43046723, 129140165, 387420491, 1162261469, 3486784403, 10460353205, 31381059611, 94143178829, 282429536483, 847288609445
OFFSET
0,1
COMMENTS
Second bisection is A134752.
It appears that if s(n) is a first order rational sequence of the form s(1)=5, s(n)= (2*s(n-1)+1)/(s(n-1)+2),n>1, then s(n)= a(n)/(a(n)-4), n>1. - Gary Detlefs, Nov 16 2010
Mahler exhibits this sequence with n>=1 as a proof that there exists an infinite number of x coprime to 3, such that x belongs to A125293 and x^2 belongs to A005836. - Michel Marcus, Nov 12 2012
LINKS
Kurt Mahler, The representation of squares to the base 3, Acta Arith. Vol. 53, Issue 1 (1989), p. 99-106.
FORMULA
a(n) = 3*a(n-1) - 4, a(0) = 3.
a(n+1) - a(n) = A008776(n).
a(n+2) - a(n) = A005051(n).
a(n) = A034472(n)+1 = A000244(n)+2 = A024023(n)+3 = A168609(n)-2 = A168610(n)-3.
G.f.: (3 - 7*x)/((1 - x)*(1 - 3*x)).
a(n) = 4*a(n-1) - 3*a(n-2), a(0) = 3, a(1) = 5. - Vincenzo Librandi, Feb 06 2013
E.g.f.: exp(3*x) + 2*exp(x). - Elmo R. Oliveira, Nov 09 2023
MAPLE
A168607:=n->3^n + 2; seq(A168607(n), n=0..30); # Wesley Ivan Hurt, Mar 21 2014
MATHEMATICA
CoefficientList[Series[(3 - 7 x)/((1-x) (1-3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 06 2013 *)
NestList[3 # - 4 & , 3, 25] (* Bruno Berselli, Feb 06 2013 *)
PROG
(Magma) [3^n+2: n in [0..30]];
(PARI) a(n)=3^n+2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A008776 (2*3^n), A005051 (8*3^n), A034472 (3^n+1), A000244 (powers of 3), A024023 (3^n-1), A168609 (3^n+4), A168610 (3^n+5), A134752 (3^(2*n-1)+2).
Sequence in context: A279674 A194563 A080443 * A057735 A095302 A335367
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 01 2009
EXTENSIONS
Edited by Klaus Brockhaus, Apr 13 2010
Further edited by N. J. A. Sloane, Aug 10 2010
STATUS
approved