login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168607 3^n + 2. 10
3, 5, 11, 29, 83, 245, 731, 2189, 6563, 19685, 59051, 177149, 531443, 1594325, 4782971, 14348909, 43046723, 129140165, 387420491, 1162261469, 3486784403, 10460353205, 31381059611, 94143178829, 282429536483, 847288609445 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Second bisection is A134752.

It appears that if s(n) is a first order rational sequence of the form s(1)=5, s(n)= (2*s(n-1)+1)/(s(n-1)+2),n>1, then s(n)= a(n)/(a(n)-4), n>1. - Gary Detlefs, Nov 16 2010

Mahler exhibits this sequence with n>=1 as a proof that there exists an infinite number of x coprime to 3, such that x belongs to A125293 and x^2 belongs to A005836. - Michel Marcus, Nov 12 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

K. Mahler, The representation of squares to the base 3, Acta Arith. Vol. 53, Issue 1 (1989), p. 99-106. - Michel Marcus, Nov 12 2012

Index entries for linear recurrences with constant coefficients, signature (4, -3).

FORMULA

a(n) = 3*a(n-1)-4, a(0) = 3.

a(n+1)-a(n) = A008776(n).

a(n+2)-a(n) = A005051(n).

a(n) = A034472(n)+1 = A000244(n)+2 = A024023(n)+3 = A168609(n)-2 = A168610(n)-3.

G.f.: (3-7*x)/((1-x)*(1-3*x)).

a(n) = 4*a(n-1) - 3*a(n-2), a(0)=3, a(1)=5. - Vincenzo Librandi, Feb 06 2013

MAPLE

A168607:=n->3^n + 2; seq(A168607(n), n=0..30); # Wesley Ivan Hurt, Mar 21 2014

MATHEMATICA

CoefficientList[Series[(3 - 7 x)/((1-x) (1-3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 06 2013 *)

NestList[3 # - 4 & , 3, 25] (* Bruno Berselli, Feb 06 2013 *)

PROG

(MAGMA) [3^n+2: n in [0..30]];

(PARI) a(n)=3^n+2 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A008776 (2*3^n), A005051 (8*3^n), A034472 (3^n+1), A000244 (powers of 3), A024023 (3^n-1), A168609 (3^n+4), (A168610 3^n+5), A134752 (3^(2*n-1)+2).

Sequence in context: A279674 A194563 A080443 * A057735 A095302 A000101

Adjacent sequences:  A168604 A168605 A168606 * A168608 A168609 A168610

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Dec 01 2009

EXTENSIONS

Edited by Klaus Brockhaus, Apr 13 2010

Further edited by N. J. A. Sloane, Aug 10 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 16:46 EDT 2019. Contains 324214 sequences. (Running on oeis4.)