OFFSET
4,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 4..1000
M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
FORMULA
a(n) = (10*4^(n-4) - 5*3^(n-3) + 9*2^(n-4) - 1)/3.
The shifted e.g.f. is (10*exp(4*x) - 15*exp(3*x) + 9*exp(2*x) - exp(x))/3.
G.f.: x^4*(1 -6*x +15*x^2 -8*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)).
MATHEMATICA
a[n_]:= (10*4^(n-4) - 5*3^(n-3) + 9*2^(n-4) - 1)/3; Table[a[n], {n, 4, 30}]
PROG
(Sage) [(10*4^(n-4) -5*3^(n-3) +9*2^(n-4) -1)/3 for n in (4..30)] # G. C. Greubel, Feb 07 2021
(Magma) [(10*4^(n-4) -5*3^(n-3) +9*2^(n-4) -1)/3: n in [4..30]]; // G. C. Greubel, Feb 07 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Martin Griffiths, Dec 01 2009
EXTENSIONS
Last element of the multiset in the definition corrected by Martin Griffiths, Dec 02 2009
STATUS
approved