login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098190
The length of the cycle reached for the map x->A098189(x) if started at n.
6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 5, 53, 1, 53, 1, 53, 5, 53, 1, 53, 1, 53, 5, 53, 1, 5, 1, 53, 5, 1, 5, 53, 1, 53, 53, 5, 1, 53, 1, 5, 1, 1, 5, 5, 1, 5, 1, 53, 1, 5, 5, 53, 1, 53, 1, 53, 5, 1, 53, 5, 53, 53
OFFSET
1,34
COMMENTS
See various attractors in A098191-A098195.
For n below 10^6, cycle-lengths are one of {1,2,3,4,5,6,7,8,9,14,18,20,29,32,47,53}.
From Michael De Vlieger, Mar 02 2017: (Start)
Corresponding number of transient terms: {0, 0, 1, 2, 1, 5, 1, 2, 3, 4, 1, 5, 1, 3, 5, 4, 1, 2, 1, 6, 7, 5, 1, 1, 6, 4, 5, 0, 1, 3, 1, 2, 1, 19, 2, 19, 1, 18, 3, 19, 1, 17, 1, 20, 20, 49, 1, 51, 3, 48, 20, 50, 1, 46, 3, 52, 21, 47, 1, 13, 1, 46, 21, 2, 20, 45, 1, 48, 51, 24, 1, 46, 1, 12, 3, 3, 20, 11, 1, 25, 1, 44, 1, 16, 21, 43, 3, 49, 1, 42, 20, 4, 49, 15, 52, 44, ...}.
Maximum number of transient terms for n = 2^m: {0, 0, 2, 5, 5, 7, 52, 53, 53, 53, 53, 68, 73, 89, 164, 197, 213, 241, 372, 422, ...}.
Maximum number of transient terms for n = 10^m: {0, 5, 52, 53, 89, 235, 502, ...}.
(End)
LINKS
EXAMPLE
Starting at n=10, the trajectory is 10->14->18->24->28->28->28 (repeating), so the cycle has length a(10)=1.
Starting at n=246, the trajectory is 246->424->278..->6008->[3768->4440->...,10264,6428,...->2206->2210->3768], where the cycle of length a(246)=29 has been put into brackets.
From Michael De Vlieger, Mar 01 2017: (Start)
a(746)=3 since the trajectory is 746->750->1312->746 (repeating).
a(3238)=4 since the trajectory begins with transient terms {3238, 3242, 3246, 5424, 5960, 5732, 4306, 4310, 6056, 3798, 5100}, followed by the cycle {8080, 7204, 5410, 7596}.
Statistics regarding a(n) for 1<=n<=10^6:
Cycle | Least n with | Frequency of cycle length for n <=
length | cycle length | 10^4 10^5 10^6
1 1 1337 9756 78784
2 1186 39 147 521
3 746 6 14 17
4 3238 43 127 430
5 34 722 1375 1740
6 2226 231 3285 19368
7 294 707 3782 39384
8 5306 44 1892 21583
9 1806 175 696 2269
14 9902 2 2256 53777
18 14422 0 2013 46218
20 9026 3 5271 67258
29 246 3709 35454 239197
32 11802 0 1342 8321
47 19554 0 1838 109448
53 46 2982 30752 311685
(End)
MATHEMATICA
Last /@ Table[If[n == 1, {0, 1}, Function[s, Function[t, {#, First@ Differences@ Take[Flatten@ t[[# + 1]], 2]} &@ Count[DeleteDuplicates@ t, k_ /; Length@ k == 1]]@ Map[Position[s, #] &, s]]@ NestList[Function[n, DivisorSum[n, # &, CoprimeQ[#, n/#] &] - EulerPhi@ n], n, n + 120]], {n, 96}] (* or, faster *)
f[n_] := Module[{s = {n}, k, g}, g[x_] := DivisorSum[x, # &, CoprimeQ[#, x/#] &] - EulerPhi@ x; k = g@ n; While[Count[s, k] <= 1, AppendTo[s, k]; k = g@ Last@ s]; s]; Table[If[n == 1, {0, 1}, Function[s, Function[t, {#, First@ Differences@ Take[Flatten@ t[[# + 1]], 2]} &@ Count[DeleteDuplicates@ t, k_ /; Length@ k == 1]]@ Map[Position[s, #] &, s]]@ f@ n], {n, 96}] (* Michael De Vlieger, Mar 01 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Sep 03 2004
EXTENSIONS
Edited by R. J. Mathar, Mar 02 2009
STATUS
approved