login
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of k^n into powers of k.
22

%I #30 Mar 19 2019 12:47:42

%S 1,1,1,1,1,1,1,2,1,1,1,2,4,1,1,1,2,5,10,1,1,1,2,6,23,36,1,1,1,2,7,46,

%T 239,202,1,1,1,2,8,82,1086,5828,1828,1,1,1,2,9,134,3707,79326,342383,

%U 27338,1,1,1,2,10,205,10340,642457,18583582,50110484,692004,1,1,1,2,11,298,24901,3649346,446020582,14481808030,18757984046,30251722,1,1

%N Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of k^n into powers of k.

%H Alois P. Heinz, <a href="/A145515/b145515.txt">Antidiagonals n = 0..40, flattened</a>

%F See program.

%F For k>1: A(n,k) = [x^(k^n)] 1/Product_{j>=0} (1-x^(k^j)).

%e A(2,3) = 5, because there are 5 partitions of 3^2=9 into powers of 3: [1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,3], [1,1,1,3,3], [3,3,3], [9].

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 2, 2, 2, 2, ...

%e 1, 1, 4, 5, 6, 7, ...

%e 1, 1, 10, 23, 46, 82, ...

%e 1, 1, 36, 239, 1086, 3707, ...

%e 1, 1, 202, 5828, 79326, 642457, ...

%p b:= proc(n, j, k) local nn;

%p nn:= n+1;

%p if n<0 then 0

%p elif j=0 or n=0 or k<=1 then 1

%p elif j=1 then nn

%p elif n>=j then (nn-j) *binomial(nn, j) *add(binomial(j, h)

%p /(nn-j+h) *b(j-h-1, j, k) *(-1)^h, h=0..j-1)

%p else b(n, j, k):= b(n-1, j, k) +b(k*n, j-1, k)

%p fi

%p end:

%p A:= (n, k)-> b(1, n, k):

%p seq(seq(A(n, d-n), n=0..d), d=0..13);

%t b[n_, j_, k_] := Module[{nn = n+1}, Which[n < 0, 0, j == 0 || n == 0 || k <= 1, 1, j == 1, nn, n >= j, (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)* b[j-h-1, j, k]*(-1)^h, {h, 0, j-1}], True, b[n, j, k] = b[n-1, j, k] + b[k*n, j-1, k] ] ]; a[n_, k_] := b[1, n, k]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* _Jean-François Alcover_, Dec 12 2013, translated from Maple *)

%Y Columns k=0+1, 2-10 give: A000012, A002577, A078125, A078537, A111822, A111827, A111832, A111837, A145512, A145513.

%Y Row n=3 gives: A189890(k+1).

%Y Main diagonal gives: A145514.

%Y Cf. A007318.

%K nonn,tabl

%O 0,8

%A _Alois P. Heinz_, Oct 11 2008

%E Edited by _Alois P. Heinz_, Jan 12 2011