login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189890
a(n) = (n^3 - 2*n^2 + 3*n + 2)/2.
4
2, 4, 10, 23, 46, 82, 134, 205, 298, 416, 562, 739, 950, 1198, 1486, 1817, 2194, 2620, 3098, 3631, 4222, 4874, 5590, 6373, 7226, 8152, 9154, 10235, 11398, 12646, 13982, 15409, 16930, 18548, 20266, 22087, 24014, 26050, 28198, 30461, 32842, 35344, 37970, 40723, 43606, 46622
OFFSET
1,1
COMMENTS
Order preserving identity difference partial one - one transformation semigroup, OIDI_n is defined if for each transformation, alpha, x<= y implies xalpha <= yalpha, for all x,y in X_n (set of natural numbers) and also the absolute value of the difference between max(Im(alpha)) and min(Im(alpha)) is less than or equal to one with non-isolation property.
FORMULA
G.f.: -x*(-2+4*x-6*x^2+x^3) / (x-1)^4. - R. J. Mathar, Jun 20 2011
E.g.f.: 4*(-2 + (2 + 2*x + x^2 + x^3)*exp(x)). - G. C. Greubel, Jan 13 2018
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 23 2021
EXAMPLE
For n = 4, a(4) = (4^3-2*4^2+3*4+2)/2 = 46/2 = 23.
MATHEMATICA
Table[(n^3-2*n^2+3*n+2)/2, {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {2, 4, 10, 23}, 50] (* G. C. Greubel, Jan 13 2018 *)
PROG
(Magma) [(n^3-2*n^2+3*n+2)/2: n in [1..50]]; // Vincenzo Librandi, May 07 2011
(PARI) a(n)=(n^3-2*n^2+3*n+2)/2 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Sequence in context: A337520 A173185 A294680 * A189587 A345195 A018111
KEYWORD
nonn,easy
AUTHOR
Adeniji, Adenike and Samuel Makanjuola(somakanjuola(AT)unilorin.edu.ng), Apr 30 2011
STATUS
approved