login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337520
Number of set partitions of [4n] into 4-element subsets {i, i+k, i+2k, i+3k} with 1<=k<=n.
4
1, 1, 2, 4, 10, 22, 64, 147, 409, 1092, 3253, 8661, 28585, 83190, 274001, 912373, 3366384, 13253582, 61533277, 290493694
OFFSET
0,3
EXAMPLE
a(4) = 10: {{1,2,3,4}, {5,6,7,8}, {9,10,11,12}, {13,14,15,16}},
{{1,3,5,7}, {2,4,6,8}, {9,10,11,12}, {13,14,15,16}},
{{1,2,3,4}, {5,7,9,11}, {6,8,10,12}, {13,14,15,16}},
{{1,4,7,10}, {2,5,8,11}, {3,6,9,12}, {13,14,15,16}},
{{1,2,3,4}, {5,6,7,8}, {9,11,13,15}, {10,12,14,16}},
{{1,3,5,7}, {2,4,6,8}, {9,11,13,15}, {10,12,14,16}},
{{2,4,6,8}, {1,5,9,13}, {3,7,11,15}, {10,12,14,16}},
{{1,2,3,4}, {5,8,11,14}, {6,9,12,15}, {7,10,13,16}},
{{1,3,5,7}, {2,6,10,14}, {9,11,13,15}, {4,8,12,16}},
{{1,5,9,13}, {2,6,10,14}, {3,7,11,15}, {4,8,12,16}}.
MAPLE
b:= proc(s, t) option remember; `if`(s={}, 1, (m-> add(
`if`({seq(m-h*j, h=1..3)} minus s={}, b(s minus {seq(m-h*j,
h=0..3)}, t), 0), j=1..min(t, iquo(m-1, 3))))(max(s)))
end:
a:= proc(n) option remember; forget(b): b({$1..4*n}, n) end:
seq(a(n), n=0..12);
MATHEMATICA
b[s_, t_] := b[s, t] = If[s == {}, 1, Function[m, Sum[ If[Union@Table[m-h*j, {h, 1, 3}] ~Complement~ s == {}, b[s ~Complement~ Union@Table[m-h*j, {h, 0, 3}], t], 0], {j, 1, Min[t, Quotient[m-1, 3]]}]][Max[s]]];
a[n_] := a[n] = b[Range[4n], n];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A360333.
Sequence in context: A203254 A076875 A179490 * A173185 A294680 A189890
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Nov 18 2020
STATUS
approved