login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203254
G.f.: A(x) = exp( Sum_{n>=1} G_n(x^n)*x^n/n ) such that G_n(x^n) = Product_{k=0..n-1} A(u^k*x) where u is an n-th root of unity.
4
1, 1, 2, 4, 10, 22, 62, 146, 422, 1084, 3160, 8064, 25190, 65204, 198652, 545790, 1680122, 4495548, 14352768, 38665478, 122530052, 343978146, 1072985932, 2947659006, 9662067644, 26573691092, 84395544446, 241295995524, 769819399580, 2140972333774, 7039688293036, 19579468840840
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} A203253(n*k)*x^(n*k)/k ) ) where A(x) = exp( Sum_{n>=1} A203253(n)*x^n/n ).
The logarithmic derivative yields A203253.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 22*x^5 + 62*x^6 + 146*x^7 +...
G.f.: A(x) = exp( Sum_{n>=1} A203253(n)*x^n/n ),
where A(x) = exp( Sum_{n>=1} G_n(x^n)*x^n/n )
and G_n(x) = exp( Sum_{k>=1} A203253(n*k)*x^k/k ), which begin:
G_1(x) = A(x);
G_2(x) = 1 + 3*x + 16*x^2 + 104*x^3 + 724*x^4 + 5428*x^5 + 44080*x^6 +...;
G_3(x) = 1 + 7*x + 122*x^2 + 2128*x^3 + 52330*x^4 + 1109386*x^5 +...;
G_4(x) = 1 + 23*x + 1080*x^2 + 67944*x^3 + 4595792*x^4 +...;
G_5(x) = 1 + 51*x + 8582*x^2 + 1482524*x^3 + 355949360*x^4 +...;
G_6(x) = 1 + 195*x + 89752*x^2 + 53146664*x^3 + 36695632888*x^4 +...;
G_7(x) = 1 + 435*x + 705756*x^2 + 1208493276*x^3 +...;
G_8(x) = 1 + 1631*x + 7232560*x^2 + 44157620896*x^3 ...;
...
Also, G_n(x^n) = Product_{k=0..n-1} A(u^k*x) where u = n-th root of unity:
G_2(x^2) = A(x)*A(-x);
G_3(x^3) = A(x)*A(u*x)*A(u^2*x) where u = exp(2*Pi*I/3);
G_4(x^4) = A(x)*A(I*x)*A(I^2*x)*A(I^3*x) where I^2 = -1;
...
The logarithmic derivative of this sequence yields A203253:
A203253 = [1,3,7,23,51,195,435,1631,4165,14563,34761,141479,...].
PROG
(PARI) {a(n)=local(L=vector(n, i, 1)); for(i=1, n, L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor(n/m), L[m*k]*x^(m*k)/k)+x*O(x^n)))))); polcoeff(exp(x*Ser(vector(n, m, L[m]/m))), n)}
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, x^m/m*round(prod(k=0, m-1, subst(A, x, exp(2*Pi*I*k/m)*x+x*O(x^n))))))); polcoeff(A, n)}
CROSSREFS
Cf. A203253 (log), A000081.
Sequence in context: A005962 A208062 A179468 * A076875 A179490 A337520
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 30 2011
STATUS
approved