login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A179490
G.f. satisfies: A(x) = exp( Sum_{n>=1} A(A179491(n)*x^n)*x^n/n ), where A(x) = exp( Sum_{n>=1} A179491(n)*x^n/n ).
1
1, 1, 2, 4, 10, 22, 63, 148, 429, 1093, 3233, 8235, 25361, 65890, 201793, 544175, 1667061, 4481965, 14036608, 38084873, 118657467, 328157619, 1023953705, 2831122937, 8891271200, 24765261847, 77805405420, 218807381684
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 22*x^5 + 63*x^6 +...
Log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 23*x^4/4 + 51*x^5/5 + 201*x^6/6 + 442*x^7/7 + 1663*x^8/8 +...+ A179491(n)*x^n/n +...
Log(A(x)) = A(x)*x + A(3*x^2)*x^2/2 + A(7*x^3)*x^3/3 + A(23*x^4)*x^4/4 + A(51*x^5)*x^5/5 +...+ A(A179491(n)*x^n)*x^n/n +...
PROG
(PARI) {a(n)=local(A=[1, 1], L=[1]); for(i=1, n+1, A=Vec(exp(sum(n=1, #A-1, subst(Ser(A), x, L[n]*x^n)*x^n/n)+O(x^#A))); A=concat(A, 0); L=Vec(deriv(log(Ser(A))))); A[n+1]}
CROSSREFS
Cf. A179491.
Sequence in context: A179468 A203254 A076875 * A337520 A173185 A294680
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 16 2010
STATUS
approved