login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179487
G.f. satisfies: A(x)^(1/3) = x + A(x) + A(A(x)) + A(A(A(x))) + A(A(A(A(x)))) +... where A(x) = Sum_{n>=1} a(n)*x^(2n-1).
1
1, 3, 12, 55, 276, 1470, 8160, 46692, 273450, 1631091, 9874836, 60522111, 374783066, 2341345848, 14738239920, 93389126442, 595210710006, 3813127548837, 24540706889124, 158592962937843, 1028721051285840
OFFSET
3,2
EXAMPLE
G.f.: A(x) = x^3 + 3*x^5 + 12*x^7 + 55*x^9 + 276*x^11 + 1470*x^13 +...
A(x)^(1/3) = x + x^3 + 3*x^5 + 12*x^7 + 56*x^9 + 285*x^11 +...
Related expansions:
A(A(x)) = x^9 + 9*x^11 + 63*x^13 + 411*x^15 + 2619*x^17 + 16569*x^19 +..
A(A(A(x))) = x^27 + 27*x^29 + 432*x^31 + 5364*x^33 + 57267*x^35 +...
A(A(A(A(x)))) = x^81 + 81*x^83 + 3483*x^85 + 105759*x^87 +...
where A(x)^(1/3) = x + A(x) + A(A(x)) + A(A(A(x))) + A(A(A(A(x)))) +...
PROG
(PARI) {a(n)=local(A=x+x^3); for(i=0, n, A=serreverse(x-subst(A, x, x^3+x^2*O(x^(2*n))))); polcoeff(A^3, 2*n-1)}
CROSSREFS
Cf. A179486, A141201 (variant).
Sequence in context: A366100 A342283 A120920 * A350265 A263533 A064314
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 12 2010
STATUS
approved