OFFSET
0,3
LINKS
T. Amdeberhan, A rather curious identity on sums over triple binomial terms, MathOverflow 2021.
FORMULA
a(n) * A000217(n) = Sum_{k=0..n-1} binomial(n + 1, k) * binomial(n, k) * binomial(n + 1, k + 2).
a(n) * A002378(n) = Sum_{k=0..n-1} binomial(n + 1, k) * binomial(n + 1, k + 1) * binomial(n + 1, k + 2).
For a recurrence see the Maple program.
a(n) ~ 2^(3*n+4) / (Pi*sqrt(3)*n^3). - Vaclav Kotesovec, Apr 27 2024
MAPLE
a := proc(n) option remember; if n < 2 then 1 else ((n + 1)*((7*n^2 + 7*n - 2)*a(n - 1) + 8*(n - 2)*n*a(n - 2)))/(n*(n + 2)*(n + 3)) fi end:
seq(a(n), n = 0..24);
MATHEMATICA
a[n_] := HypergeometricPFQ[{-n - 1, 1 - n, -n}, {1, 3}, -1];
Table[a[n], {n, 0, 24}]
PROG
(Python)
from sympy import hyperexpand
from sympy.functions import hyper
def A350265(n): return hyperexpand(hyper((-n-1, 1-n, -n), (1, 3), -1)) # Chai Wah Wu, Dec 29 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 28 2021
STATUS
approved