login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350265
a(n) = hypergeometric([-n - 1, 1 - n, -n], [1, 3], -1).
1
1, 1, 3, 12, 55, 276, 1477, 8296, 48393, 291010, 1794320, 11297760, 72413640, 471309944, 3108745785, 20746732688, 139899430981, 952127880138, 6533934575018, 45175430719240, 314467004704818, 2202576030828096, 15514620388706488, 109851319423632192, 781531332298053400
OFFSET
0,3
FORMULA
a(n) * A000217(n) = Sum_{k=0..n-1} binomial(n + 1, k) * binomial(n, k) * binomial(n + 1, k + 2).
a(n) * A002378(n) = Sum_{k=0..n-1} binomial(n + 1, k) * binomial(n + 1, k + 1) * binomial(n + 1, k + 2).
For a recurrence see the Maple program.
a(n) ~ 2^(3*n+4) / (Pi*sqrt(3)*n^3). - Vaclav Kotesovec, Apr 27 2024
MAPLE
a := proc(n) option remember; if n < 2 then 1 else ((n + 1)*((7*n^2 + 7*n - 2)*a(n - 1) + 8*(n - 2)*n*a(n - 2)))/(n*(n + 2)*(n + 3)) fi end:
seq(a(n), n = 0..24);
MATHEMATICA
a[n_] := HypergeometricPFQ[{-n - 1, 1 - n, -n}, {1, 3}, -1];
Table[a[n], {n, 0, 24}]
PROG
(Python)
from sympy import hyperexpand
from sympy.functions import hyper
def A350265(n): return hyperexpand(hyper((-n-1, 1-n, -n), (1, 3), -1)) # Chai Wah Wu, Dec 29 2021
CROSSREFS
Cf. A000217, A002378, A277188, A001181 (Baxter permutations).
Sequence in context: A342283 A120920 A179487 * A263533 A064314 A362085
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 28 2021
STATUS
approved