login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179486
G.f. A(x) satisfies A(x) = x + A(A(x)^3) where A(x) = Sum_{n>=1} a(n)*x^(2*n-1).
3
1, 1, 3, 12, 56, 285, 1533, 8571, 49311, 290019, 1735845, 10538550, 64741482, 401708636, 2513837931, 15847467276, 100547976684, 641571037002, 4114313992851, 26503239829953, 171416342026944, 1112726829455289
OFFSET
1,3
FORMULA
G.f. A(x) satisfies: A(x - A(x^3)) = x.
G.f.: A(x) = x + G(x) + G(G(x)) + G(G(G(x))) + G(G(G(G(x)))) +... where G(x) = A(x)^3 = g.f. of A179487.
Given g.f. A(x), define C(x) = A(x^3), then C(x) = x^3 + C(C(x)).
Derivative of g.f. A(x) satisfies: A'(x) = 1/(1 - 3*A(x)^2*A'(A(x)^3)).
Radius of convergence, r, and related values:
r = 0.378590868760339249702289974755919481665219504207137681721365...;
A(r) = 0.5510035125320818261355419567786182869427265480378585343298... where r = A(r) - A(A(r)^3);
A(r)^3 = 0.1672873502451522851544780724841939477291722823741494215...;
A(A(r)^3) = 0.1724126437717425764332519820226988052775070438307208...;
A'(A(r)^3) = 1.0979182660346808662695442970765885990300854399844658... where A'(A(r)^3) = 1/(3*A(r)^2);
Limit a(n+1)/a(n) = 1/r^2 = 6.9768555281242291444841704586123374638...
Let V(x) = x/(x - A(x^3)) then V'(A(r)) = 1/r, V(z) - z*V'(z) = 0 at z=A(r), and V(A(x)) = A(x)/x for all x.
EXAMPLE
G.f.: A(x) = x + x^3 + 3*x^5 + 12*x^7 + 56*x^9 + 285*x^11 +...
A(x)^3 = x^3 + 3*x^5 + 12*x^7 + 55*x^9 + 276*x^11 + 1470*x^13 +...
The series reversion of A(x) equals x - A(x^3), therefore
x = A(x - x^3 - x^9 - 3*x^15 - 12*x^21 - 56*x^27 - 285*x^33 -...).
Let G(x) = A(x)^3 be the g.f. of A179487, then
G(G(x)) = x^9 + 9*x^11 + 63*x^13 + 411*x^15 + 2619*x^17 +...,
G(G(G(x))) = x^27 + 27*x^29 + 432*x^31 + 5364*x^33 +..., and
G(G(G(G(x)))) = x^81 + 81*x^83 + 3483*x^85 +...
where A(x) = x + G(x) + G(G(x)) + G(G(G(x))) + G(G(G(G(x)))) +...
PROG
(PARI) {a(n)=local(A=x+x^3); for(i=0, n, A=serreverse(x-subst(A, x, x^3+x^2*O(x^(2*n))))); polcoeff(A, 2*n-1)}
(Maxima)
Co(n, k, F):=if k=1 then F(n) else sum(F(i+1)*Co(n-i-1, k-1, F), i, 0, n-k);
b(n):=if n=1 then 1 else sum(if 3*k>n then 0 else Co(n, 3*k, b)*b(k), k, 1, n);
a(n):=b(2*n-1);
makelist(a(n), n, 1, 7); [Vladimir Kruchinin, Jun 28 2011]
(Maxima)
T(n, m):=if n=m then 1 else kron_delta(n, m)+sum(binomial(m, j)*sum(if 3*k<=n-j then T(n-j, 3*k)*T(k, m-j) else 0, k, m-j, n-j), j, 0, m-1);
makelist(T(n, 1), n, 1, 12); [Vladimir Kruchinin, May 02 2012]
CROSSREFS
Cf. A179487, A141200 (variant).
Sequence in context: A195261 A276902 A192132 * A369482 A366097 A074533
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 12 2010
EXTENSIONS
Typo in example corrected by Paul D. Hanna, Aug 13 2010
STATUS
approved