login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192132
G.f. satisfies: A(x) = 1 + x*A(x)^3 + x*(A(x) - 1)^3.
4
1, 1, 3, 12, 56, 285, 1533, 8571, 49311, 290019, 1735845, 10538550, 64741482, 401708635, 2513837901, 15847466748, 100547969532, 641570954283, 4114313131809, 26503231512588, 171416266008912, 1112726163448431, 7247066415484731
OFFSET
0,3
COMMENTS
Not the same as A179486; the first term that differs is 401708635.
FORMULA
a(n) = sum(i=0..n-1, 2^i*binomial(n,i)*sum(j=0..n, binomial(j,-n+2*j-i-1)*binomial(n,j)))/n, n>0, a(0)=1.
G.f. satisfies: 1 + x*A(x)^3*G( x^3*A(x)^6 ) where G(x) = 1 + x*G(x)^3 = g.f. of A001764. [Paul D. Hanna, Jun 24 2011]
G.f. satisfies: A(x) = 1 + Sum_{n>=0} binomial(3*n+1,n)/(3*n+1) * x^(3*n+1)*A(x)^(6*n+3). [Paul D. Hanna, Jun 24 2011]
a(n+1) = Sum_{k=0..floor(n/3)} binomial(n,k)*binomial(3*n-3*k+3,n-3*k)/(n-k+1). - Emanuele Munarini, Jun 20 2024
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 56*x^4 + 285*x^5 + 1533*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^3 + x^4*A(x)^9 + 3*x^7*A(x)^15 + 12*x^10*A(x)^21 + 55*x^13*A(x)^27 +...+ A001764(n)*x^(3*n+1)*A(x)^(6*n+3) +...
The related expansions:
A(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 276*x^4 + 1470*x^5 + 8160*x^6 +...
(A(x)-1)^3 = x^3 + 9*x^4 + 63*x^5 + 411*x^6 + 2619*x^7 + 16569*x^8 +...
illustrate the property: A(x) = 1 + x*A(x)^3 + x*(A(x) - 1)^3.
MATHEMATICA
Table[Sum[Binomial[n, k] Binomial[3n-3k+3, n-3k]/(n-k+1), {k, 0, n/3}], {n, 0, 100}] (* for a(n+1) *) (* Emanuele Munarini, Jun 20 2024 *)
PROG
(Maxima)
a(n):=if n<1 then 1 else sum(2^i*binomial(n, i)*sum(binomial(j, -n+2*j-i-1)*binomial(n, j), j, 0, n), i, 0, n-1)/n;
(PARI) {a(n)=if(n==0, 1, sum(i=0, n-1, 2^i*binomial(n, i)*sum(j=0, n, binomial(j, -n+2*j-i-1)*binomial(n, j))/n))}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^3+x*(A-1+x*O(x^n))^3); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x, G=sum(m=0, n, binomial(3*m+1, m)/(3*m+1)*x^m)+x*O(x^n));
for(i=1, n, A=1+x*A^3*subst(G, x, x^3*A^6)); polcoeff(A, n)} /* Paul D. Hanna, Jun 24 2011 */
CROSSREFS
Cf. A001764.
Sequence in context: A226316 A195261 A276902 * A179486 A369482 A366097
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jun 24 2011
STATUS
approved