Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jun 20 2024 16:33:03
%S 1,1,3,12,56,285,1533,8571,49311,290019,1735845,10538550,64741482,
%T 401708635,2513837901,15847466748,100547969532,641570954283,
%U 4114313131809,26503231512588,171416266008912,1112726163448431,7247066415484731
%N G.f. satisfies: A(x) = 1 + x*A(x)^3 + x*(A(x) - 1)^3.
%C Not the same as A179486; the first term that differs is 401708635.
%F a(n) = sum(i=0..n-1, 2^i*binomial(n,i)*sum(j=0..n, binomial(j,-n+2*j-i-1)*binomial(n,j)))/n, n>0, a(0)=1.
%F G.f. satisfies: 1 + x*A(x)^3*G( x^3*A(x)^6 ) where G(x) = 1 + x*G(x)^3 = g.f. of A001764. [_Paul D. Hanna_, Jun 24 2011]
%F G.f. satisfies: A(x) = 1 + Sum_{n>=0} binomial(3*n+1,n)/(3*n+1) * x^(3*n+1)*A(x)^(6*n+3). [_Paul D. Hanna_, Jun 24 2011]
%F a(n+1) = Sum_{k=0..floor(n/3)} binomial(n,k)*binomial(3*n-3*k+3,n-3*k)/(n-k+1). - _Emanuele Munarini_, Jun 20 2024
%e G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 56*x^4 + 285*x^5 + 1533*x^6 +...
%e where the g.f. satisfies:
%e A(x) = 1 + x*A(x)^3 + x^4*A(x)^9 + 3*x^7*A(x)^15 + 12*x^10*A(x)^21 + 55*x^13*A(x)^27 +...+ A001764(n)*x^(3*n+1)*A(x)^(6*n+3) +...
%e The related expansions:
%e A(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 276*x^4 + 1470*x^5 + 8160*x^6 +...
%e (A(x)-1)^3 = x^3 + 9*x^4 + 63*x^5 + 411*x^6 + 2619*x^7 + 16569*x^8 +...
%e illustrate the property: A(x) = 1 + x*A(x)^3 + x*(A(x) - 1)^3.
%t Table[Sum[Binomial[n,k] Binomial[3n-3k+3,n-3k]/(n-k+1), {k,0,n/3}], {n,0,100}] (* for a(n+1) *) (* _Emanuele Munarini_, Jun 20 2024 *)
%o (Maxima)
%o a(n):=if n<1 then 1 else sum(2^i*binomial(n,i)*sum(binomial(j,-n+2*j-i-1)*binomial(n,j),j,0,n),i,0,n-1)/n;
%o (PARI) {a(n)=if(n==0,1,sum(i=0,n-1, 2^i*binomial(n,i)*sum(j=0,n, binomial(j,-n+2*j-i-1)*binomial(n,j))/n))}
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x*A^3+x*(A-1+x*O(x^n))^3);polcoeff(A,n)}
%o (PARI) {a(n)=local(A=1+x,G=sum(m=0,n,binomial(3*m+1,m)/(3*m+1)*x^m)+x*O(x^n));
%o for(i=1,n,A=1+x*A^3*subst(G,x,x^3*A^6));polcoeff(A,n)} /* _Paul D. Hanna_, Jun 24 2011 */
%Y Cf. A001764.
%K nonn
%O 0,3
%A _Vladimir Kruchinin_, Jun 24 2011