login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173185
Partial sums of A003418.
3
1, 2, 4, 10, 22, 82, 142, 562, 1402, 3922, 6442, 34162, 61882, 422242, 782602, 1142962, 1863682, 14115922, 26368162, 259160722, 491953282, 724745842, 957538402, 6311767282, 11665996162, 38437140562, 65208284962, 145521718162, 225835151362, 2554924714162
OFFSET
0,2
COMMENTS
From Antti Karttunen, Feb 27 2014: (Start)
For all n >= 4, a(n) mod 10 = 2 (as A003418(5) = 60, the first multiple of ten in that sequence).
For all n >= 24, a(n) mod 100 = 62 (as A003418(25) = 26771144400, the first multiple of one hundred in that sequence).
Cf. also A236856.
a(n-1) gives the position of the first element of row n in irregular tables like A238280.
(End)
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2297 (first 251 terms from Antti Karttunen)
FORMULA
a(n) = Sum_{i=0..n} A003418(i).
MAPLE
b:= proc(n) b(n):= `if`(n=0, 1, ilcm(n, b(n-1))) end:
a:= proc(n) a(n):= `if`(n<0, 0, a(n-1) +b(n)) end:
seq(a(n), n=0..35); # Alois P. Heinz, Mar 31 2018
MATHEMATICA
Table[If[n == 0, 1, LCM @@ Range[n]], {n, 0, 50}] // Accumulate (* Jean-François Alcover, Jan 03 2022 *)
PROG
(Scheme) (define (A173185 n) (if (< n 1) 1 (+ (A173185 (- n 1)) (A003418 n))))
(PARI) a(n) = sum(k=0, n, lcm(vector(k, i, i))); \\ Michel Marcus, Mar 13 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 12 2010
EXTENSIONS
Missing term a(9)=3922 inserted by Antti Karttunen, Feb 27 2014
STATUS
approved