login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093880 a(n) = lcm(1, 2, ..., 2n) / lcm(1, 2, ..., n). 4
2, 6, 10, 70, 42, 462, 858, 858, 4862, 92378, 8398, 193154, 74290, 222870, 6463230, 200360130, 11785890, 11785890, 22951470, 22951470, 941010270, 40463441610, 1759280070, 82686163290, 115760628606, 115760628606, 2045104438706 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also, lcm(n+1, n+2, ..., 2n-1, 2n) / lcm(1, 2, ..., n-1, n).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..500

J. Sondow, Criteria for irrationality of Euler's constant, Criteria for irrationality of Euler's constant, Proc. Amer. Math. Soc. 131 (2003) 3335-3344.

Eric Weisstein's World of Mathematics, Least Common Multiple

Index entries for sequences related to lcm's

FORMULA

The prime number theorem implies that a(n) = e^(n(1+o(1))) as n -> infinity. In other words, log(a(n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005

a(n) = A003418(2n)/A003418(n) = A099996(n)/A003418(n).

EXAMPLE

The LCM of {1,2,3,4,5,6} is 60 and the LCM of {1,2,3} is 6, so a(3) = 60/6 = 10.

MAPLE

a:=n->lcm(seq(j, j=n+1..2*n))/lcm(seq(j, j=1..n)): seq(a(n), n=1..32); # Emeric Deutsch, Feb 02 2006

MATHEMATICA

f[n_] := LCM @@ Table[i, {i, 2n}]/LCM @@ Table[i, {i, n}]; Table[ f[n], {n, 27}] (* Robert G. Wilson v, Jan 22 2005 *)

CROSSREFS

Cf. A080397.

Sequence in context: A115113 A163788 A324547 * A080397 A322756 A048782

Adjacent sequences:  A093877 A093878 A093879 * A093881 A093882 A093883

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Apr 22 2004

EXTENSIONS

More terms from Emeric Deutsch, Feb 02 2006

Entry revised by N. J. A. Sloane, Jan 24 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 09:51 EST 2019. Contains 329111 sequences. (Running on oeis4.)