login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = exp( Sum_{n>=1} G_n(x^n)*x^n/n ) such that G_n(x^n) = Product_{k=0..n-1} A(u^k*x) where u is an n-th root of unity.
4

%I #19 Mar 30 2012 18:37:33

%S 1,1,2,4,10,22,62,146,422,1084,3160,8064,25190,65204,198652,545790,

%T 1680122,4495548,14352768,38665478,122530052,343978146,1072985932,

%U 2947659006,9662067644,26573691092,84395544446,241295995524,769819399580,2140972333774,7039688293036,19579468840840

%N G.f.: A(x) = exp( Sum_{n>=1} G_n(x^n)*x^n/n ) such that G_n(x^n) = Product_{k=0..n-1} A(u^k*x) where u is an n-th root of unity.

%H Paul D. Hanna, <a href="/A203254/b203254.txt">Table of n, a(n) for n = 0..100</a>

%F G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} A203253(n*k)*x^(n*k)/k ) ) where A(x) = exp( Sum_{n>=1} A203253(n)*x^n/n ).

%F The logarithmic derivative yields A203253.

%e G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 22*x^5 + 62*x^6 + 146*x^7 +...

%e G.f.: A(x) = exp( Sum_{n>=1} A203253(n)*x^n/n ),

%e where A(x) = exp( Sum_{n>=1} G_n(x^n)*x^n/n )

%e and G_n(x) = exp( Sum_{k>=1} A203253(n*k)*x^k/k ), which begin:

%e G_1(x) = A(x);

%e G_2(x) = 1 + 3*x + 16*x^2 + 104*x^3 + 724*x^4 + 5428*x^5 + 44080*x^6 +...;

%e G_3(x) = 1 + 7*x + 122*x^2 + 2128*x^3 + 52330*x^4 + 1109386*x^5 +...;

%e G_4(x) = 1 + 23*x + 1080*x^2 + 67944*x^3 + 4595792*x^4 +...;

%e G_5(x) = 1 + 51*x + 8582*x^2 + 1482524*x^3 + 355949360*x^4 +...;

%e G_6(x) = 1 + 195*x + 89752*x^2 + 53146664*x^3 + 36695632888*x^4 +...;

%e G_7(x) = 1 + 435*x + 705756*x^2 + 1208493276*x^3 +...;

%e G_8(x) = 1 + 1631*x + 7232560*x^2 + 44157620896*x^3 ...;

%e ...

%e Also, G_n(x^n) = Product_{k=0..n-1} A(u^k*x) where u = n-th root of unity:

%e G_2(x^2) = A(x)*A(-x);

%e G_3(x^3) = A(x)*A(u*x)*A(u^2*x) where u = exp(2*Pi*I/3);

%e G_4(x^4) = A(x)*A(I*x)*A(I^2*x)*A(I^3*x) where I^2 = -1;

%e ...

%e The logarithmic derivative of this sequence yields A203253:

%e A203253 = [1,3,7,23,51,195,435,1631,4165,14563,34761,141479,...].

%o (PARI) {a(n)=local(L=vector(n,i,1));for(i=1,n,L=Vec(deriv(sum(m=1,n,x^m/m*exp(sum(k=1,floor(n/m),L[m*k]*x^(m*k)/k)+x*O(x^n))))));polcoeff(exp(x*Ser(vector(n,m,L[m]/m))),n)}

%o (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=1,n,x^m/m*round(prod(k=0,m-1,subst(A,x,exp(2*Pi*I*k/m)*x+x*O(x^n)))))));polcoeff(A,n)}

%Y Cf. A203253 (log), A000081.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Dec 30 2011