login
A337521
a(n) = L(n)*a(n-1) + a(n-2) with a(0) = a(1) = 1 and L(n) the Lucas numbers A000032.
0
1, 1, 4, 17, 123, 1370, 24783, 720077, 33868402, 2574718629, 316724259769, 63030702412660, 20296202901136289, 10574384742194419229, 8914226633872796546336, 12159015702987236683621533, 26834956570719465233549269667, 95827642073054913336241125602390
OFFSET
0,3
COMMENTS
Denominators of the continued fraction expansion [2, 1, 3, . . . , L(n)], where L(n) represents the n-th Lucas Number.
The determinant of n X n matrix: ([L(1), -1, 0, . . . , 0], [1, L(2), -1, 0, . . . , 0], [0, 1, L(3), -1, 0, . . . , 0 ], . . . , [0, 0, 0, 0, . . . , 1, L(n)]).
Examples: a(1) = det[1] = 1; a(2) = det([[1, -1], [1, 3]]) = 4;a(3) = det([[1, -1, 0], [1, 3, -1], [0, 1, 4]]) = 17;a(4) = det([[1, -1, 0, 0], [1, 3 , -1, 0], [0, 1, 4, -1], [0, 0, 1, 7]]) = 123 - Seung Ju Lee, Sep 06 2020
FORMULA
a(n) ~ c * ((1 + sqrt(5))/2)^(n*(n+1)/2), where c = 2.8051534321074771176277443455334066418353792262447...
MAPLE
a:= proc(n) option remember; `if`(n<2, 1, a(n-1)*
(<<0|1>, <1|1>>^n. <<2, 1>>)[1, 1]+a(n-2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 19 2020
MATHEMATICA
Table[Denominator[FromContinuedFraction[LucasL[Range[0, n]]]], {n, 0, 20}]
CROSSREFS
Sequence in context: A054927 A307794 A071138 * A032325 A032335 A208803
KEYWORD
nonn
AUTHOR
Greg Dresden, Aug 30 2020
STATUS
approved