login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334250
Number of set partitions of [3n] into 3-element subsets {i, i+k, i+2k} with 1<=k<=n.
3
1, 1, 2, 4, 12, 35, 129, 567, 2920, 16110, 103467, 717608, 5748214, 47937957, 441139750, 4319093093, 45963368076
OFFSET
0,3
COMMENTS
Differs from A331621 first at n=7.
FORMULA
a(n) <= A104429(n) <= A025035(n).
EXAMPLE
a(2) = 2: 123|456, 135|246.
a(3) = 4: 123|456|789, 123|468|579, 135|246|789, 147|258|369.
MAPLE
b:= proc(s, t) option remember; `if`(s={}, 1, (m-> add(
`if`({m-j, m-2*j} minus s={}, b(s minus {m, m-j, m-2*j},
t), 0), j=1..min(t, iquo(m-1, 2))))(max(s)))
end:
a:= proc(n) option remember; forget(b): b({$1..3*n}, n) end:
seq(a(n), n=0..12);
MATHEMATICA
b[s_List, t_] := b[s, t] = If[s == {}, 1, Function[m, Sum[If[{m - j, m - 2j} ~Complement~ s == {}, b[s ~Complement~ {m, m - j, m - 2j}, t], 0], {j, 1, Min[t, Quotient[m - 1, 2]]}]][Max[s]]];
a[n_] := a[n] = b[Range[3n], n];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, May 10 2020, after Maple *)
CROSSREFS
Cf. A014307 (the same for 2-element subsets), A025035, A059108, A104429 (where k is not restricted), A285527, A331621, A337520.
Main diagonal of A360334.
Sequence in context: A148206 A148207 A331621 * A211768 A112083 A089965
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Apr 20 2020
STATUS
approved