This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188377 a(n) = n^3 - 4n^2 + 6n - 2. 21
 7, 22, 53, 106, 187, 302, 457, 658, 911, 1222, 1597, 2042, 2563, 3166, 3857, 4642, 5527, 6518, 7621, 8842, 10187, 11662, 13273, 15026, 16927, 18982, 21197, 23578, 26131, 28862, 31777, 34882, 38183, 41686, 45397, 49322, 53467, 57838, 62441, 67282, 72367 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS Number of nilpotent elements in the identity difference partial one - one transformation semigroup, denoted by N(IDI_n). a(n+1) is also the Moore lower bound on the order of an (n,7)-cage. - Jason Kimberley, Oct 20 2011 REFERENCES A. Laradji and A. Umar, On the number of nilpotents in the partial symmetric semigroup, Communications in Algebra 32 (2004), 3017-3023. R. P. Sullivan, Semigroups generated by nilpotent transformations, Journal of Algebra 110 (1987), 324-345. LINKS Vincenzo Librandi, Table of n, a(n) for n = 3..1000 G. Royle, Cages of higher valency Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n+1) = (n+1)^3 - 4*(n+1)^2 + 6*(n+1) - 2        = (n-1)^3 + 2*(n-1)^2 + 2*(n-1) + 2        = 1222 read in base n-1. - Jason Kimberley, Oct 20 2011 From Colin Barker, Apr 06 2012: (Start) a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). G.f.: x^3*(7 - 6*x + 7*x^2 - 2*x^3)/(1-x)^4. (End) EXAMPLE For n=3, #N(IDI_n) = 7. MATHEMATICA Table[n^3 - 4*n^2 + 6*n - 2, {n, 3, 80}] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *) LinearRecurrence[{4, -6, 4, -1}, {7, 22, 53, 106}, 50] (* Harvey P. Dale, May 29 2019 *) PROG (MAGMA) [n^3 - 4*n^2 + 6*n - 2: n in [3..50]]; // Vincenzo Librandi, May 01 2011 (MAGMA) [SequenceToInteger([2^^3, 1], n-2):n in [5..50]]; // Jason Kimberley, Oct 20 2011 (PARI) a(n)=n^3-4*n^2+6*n-2 \\ Charles R Greathouse IV, Apr 06 2012 CROSSREFS Cf. A188716, A188947. Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), this sequence (g=7). - Jason Kimberley, Oct 30 2011 Sequence in context: A011926 A101120 A151717 * A213585 A308579 A246831 Adjacent sequences:  A188374 A188375 A188376 * A188378 A188379 A188380 KEYWORD nonn,easy AUTHOR Adeniji, Adenike & Makanjuola, Samuel (somakanjuola(AT)unilorin.edu.ng) Apr 14 2011 EXTENSIONS Edited by N. J. A. Sloane, Apr 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:36 EST 2019. Contains 329865 sequences. (Running on oeis4.)