login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188377 a(n) = n^3 - 4n^2 + 6n - 2. 21
7, 22, 53, 106, 187, 302, 457, 658, 911, 1222, 1597, 2042, 2563, 3166, 3857, 4642, 5527, 6518, 7621, 8842, 10187, 11662, 13273, 15026, 16927, 18982, 21197, 23578, 26131, 28862, 31777, 34882, 38183, 41686, 45397, 49322, 53467, 57838, 62441, 67282, 72367 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

Number of nilpotent elements in the identity difference partial one - one transformation semigroup, denoted by N(IDI_n).

a(n+1) is also the Moore lower bound on the order of an (n,7)-cage. - Jason Kimberley, Oct 20 2011

REFERENCES

A. Laradji and A. Umar, On the number of nilpotents in the partial symmetric semigroup, Communications in Algebra 32 (2004), 3017-3023.

R. P. Sullivan, Semigroups generated by nilpotent transformations, Journal of Algebra 110 (1987), 324-345.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 3..1000

G. Royle, Cages of higher valency

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n+1) = (n+1)^3 - 4*(n+1)^2 + 6*(n+1) - 2

       = (n-1)^3 + 2*(n-1)^2 + 2*(n-1) + 2

       = 1222 read in base n-1.

- Jason Kimberley, Oct 20 2011

From Colin Barker, Apr 06 2012: (Start)

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).

G.f.: x^3*(7 - 6*x + 7*x^2 - 2*x^3)/(1-x)^4. (End)

EXAMPLE

For n=3, #N(IDI_n) = 7.

MATHEMATICA

Table[n^3 - 4*n^2 + 6*n - 2, {n, 3, 80}] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *)

LinearRecurrence[{4, -6, 4, -1}, {7, 22, 53, 106}, 50] (* Harvey P. Dale, May 29 2019 *)

PROG

(MAGMA) [n^3 - 4*n^2 + 6*n - 2: n in [3..50]]; // Vincenzo Librandi, May 01 2011

(MAGMA) [SequenceToInteger([2^^3, 1], n-2):n in [5..50]]; // Jason Kimberley, Oct 20 2011

(PARI) a(n)=n^3-4*n^2+6*n-2 \\ Charles R Greathouse IV, Apr 06 2012

CROSSREFS

Cf. A188716, A188947.

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), this sequence (g=7). - Jason Kimberley, Oct 30 2011

Sequence in context: A011926 A101120 A151717 * A213585 A308579 A246831

Adjacent sequences:  A188374 A188375 A188376 * A188378 A188379 A188380

KEYWORD

nonn,easy

AUTHOR

Adeniji, Adenike & Makanjuola, Samuel (somakanjuola(AT)unilorin.edu.ng) Apr 14 2011

EXTENSIONS

Edited by N. J. A. Sloane, Apr 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:36 EST 2019. Contains 329865 sequences. (Running on oeis4.)