login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145514
Number of partitions of n^n into powers of n, also diagonal of A145515 and A196879.
5
1, 1, 4, 23, 1086, 642457, 6188114528, 1226373476385199, 6071277235712979102634, 884267692532264259002637317099, 4362395890943439751990308572939648140812, 824887275128335259519795007492785652798382136996397
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^(n^n)] 1/Product_{j>=0}(1-x^(n^j)), n>1.
EXAMPLE
a(2) = 4, because there are 4 partitions of 2^2=4 into powers of 2: [1,1,1,1], [1,1,2], [2,2], [4].
MAPLE
g:= proc(b, n, k) option remember; local t; if b<0 then 0 elif b=0 or n=0 or k<=1 then 1 elif b>=n then add(g(b-t, n, k) *binomial(n+1, t) *(-1)^(t+1), t=1..n+1); else g(b-1, n, k) +g(b*k, n-1, k) fi end: a:= n-> g(1, n, n): seq(a(n), n=0..13);
MATHEMATICA
g[b_, n_, k_] := g[b, n, k] = Which[b<0, 0, b == 0 || n == 0 || k <= 1, 1, b >= n, Sum[g[b-t, n, k] *Binomial[n+1, t]*(-1)^(t+1), {t, 1, n+1}], True, g[b-1, n, k] + g[b*k, n-1, k]]; a[n_] := g[1, n, n]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 11 2008
STATUS
approved