login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196879 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of n^k into powers of k. 20
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 10, 1, 1, 1, 1, 6, 23, 36, 1, 1, 1, 1, 9, 72, 132, 94, 1, 1, 1, 1, 16, 335, 1086, 729, 284, 1, 1, 1, 1, 36, 2220, 15265, 15076, 3987, 692, 1, 1, 1, 1, 85, 19166, 374160, 642457, 182832, 18687, 1828, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

LINKS

Alois P. Heinz, Antidiagonals n = 0..44, flattened

FORMULA

For k>1: A(n,k) = [x^(n^k)] 1/Product_{j>=0}(1-x^(k^j)).

EXAMPLE

A(2,3) = 3, because the number of partitions of 2^3=8 into powers of 3 is 3: [1,1,3,3], [1,1,1,1,1,3], [1,1,1,1,1,1,1,1].

Square array A(n,k) begins:

  1,  1,  1,   1,     1,      1,  ...

  1,  1,  1,   1,     1,      1,  ...

  1,  1,  4,   3,     6,      9,  ...

  1,  1, 10,  23,    72,    335,  ...

  1,  1, 36, 132,  1086,  15265,  ...

  1,  1, 94, 729, 15076, 642457,  ...

MAPLE

b:= proc(n, j, k) local nn, r;

      if n<0 then 0

    elif j=0 then 1

    elif j=1 then n+1

    elif n<j then b(n, j, k):= b(n-1, j, k) +b(k*n, j-1, k)

             else nn:= 1 +floor(n);

                  r:= n-nn;

                  (nn-j) *binomial(nn, j) *add(binomial(j, h)

                  /(nn-j+h) *b(j-h+r, j, k) *(-1)^h, h=0..j-1)

      fi

    end:

A:= proc(n, k) local s, t;

      if k<2 then return 1 fi;

      s:= floor(n^k/k);

      t:= ilog[k](k*s+1);

      b(s/k^(t-1), t, k)

    end:

seq(seq(A(n, d-n), n=0..d), d=0..15);

MATHEMATICA

a[_, 0] = a[_, 1] = a[0, _] = a[1, _] = 1; a[n_, k_] := SeriesCoefficient[ 1/Product[ (1 - x^(k^j)), {j, 0, n}], {x, 0, n^k}]; Table[a[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 09 2013 *)

CROSSREFS

Columns k=0+1, 2-10 give: A000012, A196880, A196881, A196882, A196883, A196884, A196885, A196886, A196887, A196888.

Rows n=0+1, 2-10 give: A000012, A196889, A196890, A196891, A196892, A196893, A196894, A196895, A196896, A196897.

Main diagonal gives: A145514.

Cf. A145515.

Sequence in context: A046592 A334432 A010326 * A193349 A053231 A066701

Adjacent sequences:  A196876 A196877 A196878 * A196880 A196881 A196882

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Oct 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 13:45 EST 2021. Contains 349563 sequences. (Running on oeis4.)