login
A196879
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of n^k into powers of k.
20
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 10, 1, 1, 1, 1, 6, 23, 36, 1, 1, 1, 1, 9, 72, 132, 94, 1, 1, 1, 1, 16, 335, 1086, 729, 284, 1, 1, 1, 1, 36, 2220, 15265, 15076, 3987, 692, 1, 1, 1, 1, 85, 19166, 374160, 642457, 182832, 18687, 1828, 1, 1
OFFSET
0,13
LINKS
FORMULA
For k>1: A(n,k) = [x^(n^k)] 1/Product_{j>=0}(1-x^(k^j)).
EXAMPLE
A(2,3) = 3, because the number of partitions of 2^3=8 into powers of 3 is 3: [1,1,3,3], [1,1,1,1,1,3], [1,1,1,1,1,1,1,1].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 4, 3, 6, 9, ...
1, 1, 10, 23, 72, 335, ...
1, 1, 36, 132, 1086, 15265, ...
1, 1, 94, 729, 15076, 642457, ...
MAPLE
b:= proc(n, j, k) local nn, r;
if n<0 then 0
elif j=0 then 1
elif j=1 then n+1
elif n<j then b(n, j, k):= b(n-1, j, k) +b(k*n, j-1, k)
else nn:= 1 +floor(n);
r:= n-nn;
(nn-j) *binomial(nn, j) *add(binomial(j, h)
/(nn-j+h) *b(j-h+r, j, k) *(-1)^h, h=0..j-1)
fi
end:
A:= proc(n, k) local s, t;
if k<2 then return 1 fi;
s:= floor(n^k/k);
t:= ilog[k](k*s+1);
b(s/k^(t-1), t, k)
end:
seq(seq(A(n, d-n), n=0..d), d=0..15);
MATHEMATICA
a[_, 0] = a[_, 1] = a[0, _] = a[1, _] = 1; a[n_, k_] := SeriesCoefficient[ 1/Product[ (1 - x^(k^j)), {j, 0, n}], {x, 0, n^k}]; Table[a[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 09 2013 *)
CROSSREFS
Main diagonal gives: A145514.
Cf. A145515.
Sequence in context: A334432 A370130 A010326 * A193349 A380587 A053231
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 07 2011
STATUS
approved