OFFSET
0,13
LINKS
Alois P. Heinz, Antidiagonals n = 0..44, flattened
FORMULA
For k>1: A(n,k) = [x^(n^k)] 1/Product_{j>=0}(1-x^(k^j)).
EXAMPLE
A(2,3) = 3, because the number of partitions of 2^3=8 into powers of 3 is 3: [1,1,3,3], [1,1,1,1,1,3], [1,1,1,1,1,1,1,1].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 4, 3, 6, 9, ...
1, 1, 10, 23, 72, 335, ...
1, 1, 36, 132, 1086, 15265, ...
1, 1, 94, 729, 15076, 642457, ...
MAPLE
b:= proc(n, j, k) local nn, r;
if n<0 then 0
elif j=0 then 1
elif j=1 then n+1
elif n<j then b(n, j, k):= b(n-1, j, k) +b(k*n, j-1, k)
else nn:= 1 +floor(n);
r:= n-nn;
(nn-j) *binomial(nn, j) *add(binomial(j, h)
/(nn-j+h) *b(j-h+r, j, k) *(-1)^h, h=0..j-1)
fi
end:
A:= proc(n, k) local s, t;
if k<2 then return 1 fi;
s:= floor(n^k/k);
t:= ilog[k](k*s+1);
b(s/k^(t-1), t, k)
end:
seq(seq(A(n, d-n), n=0..d), d=0..15);
MATHEMATICA
a[_, 0] = a[_, 1] = a[0, _] = a[1, _] = 1; a[n_, k_] := SeriesCoefficient[ 1/Product[ (1 - x^(k^j)), {j, 0, n}], {x, 0, n^k}]; Table[a[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 09 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 07 2011
STATUS
approved