OFFSET
0,1
COMMENTS
FORMULA
T(m, k) = [x^k] MPc2odd(m, x), with MPc2odd(m, x) = Product_{j=1..delta(2*m+1)} (x - (2 + R(rpnodd(2*m+1)_j, rho(2*m+1)))) (evaluated using C(2*m+1, rho(2*m+1)) = 0), for m >= 1, and MPc2odd(0, x) = -4 + x. Here R(n, x) is the monic Chebyshev R polynomial with coefficients given in A127672. C(n, x) is the minimal polynomial of rho(n) = 2*cos(Pi/n) given in A187360, and rpnodd(m) is the list of positive odd numbers coprime to 2*m + 1 and <= 2*m - 1.
EXAMPLE
The irregular triangle T(m,k) begins:
m, n \ k 0 1 2 3 4 5 6 7 8 9 ...
--------------------------------------------------------------
0, 1 -4 1
1, 3: -1 1
2, 5: 1 -3 1
3, 7: -1 6 -5 1
4, 9: -1 9 -6 1
5, 11: -1 15 -35 28 -9 1
6, 13: 1 -21 70 -84 45 -11 1
7, 15: 1 -24 26 -9 1
8, 17: 1 -36 210 -462 495 -286 91 -15 1
9, 19: -1 45 -330 924 -1287 1001 -455 120 -17 1
10, 21: 1 -48 148 -146 64 -13 1
...
CROSSREFS
KEYWORD
sign,tabf,easy
AUTHOR
Wolfdieter Lang, Jun 15 2020
STATUS
approved