login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A334431 Irregular triangle read by rows: T(m,k) gives the coefficients of x^k of the minimal polynomials of (2*cos(Pi/(2*m)))^2, for m >= 1. 2
0, 1, -2, 1, -3, 1, 2, -4, 1, 5, -5, 1, 1, -4, 1, -7, 14, -7, 1, 2, -16, 20, -8, 1, -3, 9, -6, 1, 1, -12, 19, -8, 1, -11, 55, -77, 44, -11, 1, 1, -16, 20, -8, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The length of row m is delta(m) + 1 = A055034(m) + 1.

For details see A334429, where the formula for the minimal polynomial MPc2(m, x) of 2*cos(Pi/(2*m))^2 = rho(2*m)^2 is given.

The companion triangle for odd n is A334432.

LINKS

Table of n, a(n) for n=1..44.

FORMULA

T(m, k) = [x^k] MPc2even(m, x), with MPc2even(m, x) = Product_{j=1..delta(m)} (x - (2 + R(rpnodd(m)_j, rho(m)))) (evaluated using C(m, rho(m)) = 0), for m >= 2, and  MPc2even(1, x) = x. Here R(n, x) is the monic Chebyshev R polynomial with coefficients given in A127672. C(n, x) is the minimal polynomial of rho(n) = 2*cos(Pi/n) given in A187360, and rpnodd(m) is the list of positive odd numbers coprime to m and <= m - 1.

EXAMPLE

The irregular triangle T(m, k) begins:

m,   n \ k  0   1   2    3   4    5   6 ...

-------------------------------------------

1,   2:     0   1

2,   4:    -2   1

3,   6:    -3   1

4,   8:     2  -4   1

5,  10:     5  -5   1

6,  12:     1  -4   1

7,  14:    -7  14  -7    1

8,  16:     2 -16  20   -8   1

9,  18:    -3   9  -6    1

10, 20:     1 -12  19   -8   1

11, 22:   -11  55 -77   44 -11    1

12, 24:     1 -16  20   -8   1

13, 26:    13 -91 182 -156  65  -13   1

14, 28:     1 -24  86 -104  53  -12   1

15, 30:     1  -8  14   -7   1

...

CROSSREFS

Cf. A055034, A334429, A334432.

Sequence in context: A319845 A319847 A334217 * A342011 A087295 A175344

Adjacent sequences:  A334428 A334429 A334430 * A334432 A334433 A334434

KEYWORD

sign,tabf,easy

AUTHOR

Wolfdieter Lang, Jun 15 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 23:56 EST 2022. Contains 350572 sequences. (Running on oeis4.)