login
A334434
Heinz number of the n-th integer partition in graded lexicographic order.
22
1, 2, 4, 3, 8, 6, 5, 16, 12, 9, 10, 7, 32, 24, 18, 20, 15, 14, 11, 64, 48, 36, 27, 40, 30, 25, 28, 21, 22, 13, 128, 96, 72, 54, 80, 60, 45, 50, 56, 42, 35, 44, 33, 26, 17, 256, 192, 144, 108, 81, 160, 120, 90, 100, 75, 112, 84, 63, 70, 49, 88, 66, 55, 52, 39, 34, 19
OFFSET
0,2
COMMENTS
A permutation of the positive integers.
This is the graded reverse of the so-called "Mathematica" order (A080577, A129129).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0.
FORMULA
A001222(a(n)) appears to be A049085(n).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {} 11: {5} 45: {2,2,3}
2: {1} 64: {1,1,1,1,1,1} 50: {1,3,3}
4: {1,1} 48: {1,1,1,1,2} 56: {1,1,1,4}
3: {2} 36: {1,1,2,2} 42: {1,2,4}
8: {1,1,1} 27: {2,2,2} 35: {3,4}
6: {1,2} 40: {1,1,1,3} 44: {1,1,5}
5: {3} 30: {1,2,3} 33: {2,5}
16: {1,1,1,1} 25: {3,3} 26: {1,6}
12: {1,1,2} 28: {1,1,4} 17: {7}
9: {2,2} 21: {2,4} 256: {1,1,1,1,1,1,1,1}
10: {1,3} 22: {1,5} 192: {1,1,1,1,1,1,2}
7: {4} 13: {6} 144: {1,1,1,1,2,2}
32: {1,1,1,1,1} 128: {1,1,1,1,1,1,1} 108: {1,1,2,2,2}
24: {1,1,1,2} 96: {1,1,1,1,1,2} 81: {2,2,2,2}
18: {1,2,2} 72: {1,1,1,2,2} 160: {1,1,1,1,1,3}
20: {1,1,3} 54: {1,2,2,2} 120: {1,1,1,2,3}
15: {2,3} 80: {1,1,1,1,3} 90: {1,2,2,3}
14: {1,4} 60: {1,1,2,3} 100: {1,1,3,3}
Triangle begins:
1
2
4 3
8 6 5
16 12 9 10 7
32 24 18 20 15 14 11
64 48 36 27 40 30 25 28 21 22 13
128 96 72 54 80 60 45 50 56 42 35 44 33 26 17
This corresponds to the tetrangle:
0
(1)
(11)(2)
(111)(21)(3)
(1111)(211)(22)(31)(4)
(11111)(2111)(221)(311)(32)(41)(5)
MATHEMATICA
lexsort[f_, c_]:=OrderedQ[PadRight[{f, c}]];
Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n], lexsort], {n, 0, 8}]
- or -
Join@@Table[Times@@Prime/@#&/@Reverse[IntegerPartitions[n]], {n, 0, 8}]
CROSSREFS
Row lengths are A000041.
The dual version (sum/revlex) is A129129.
The constructive version is A193073.
Compositions under the same order are A228351.
The length-sensitive version is A334433.
The version for reversed (weakly increasing) partitions is A334437.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Sequence in context: A260431 A376738 A333484 * A333485 A246166 A334437
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, May 01 2020
STATUS
approved