The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A334302 Irregular triangle read by rows where row k is the k-th reversed integer partition, if reversed partitions are sorted first by sum, then by length, and finally reverse-lexicographically. 35
 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 5, 2, 3, 1, 4, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 1, 5, 2, 2, 2, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 3, 4, 2, 5, 1, 6, 2, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS OEIS Wiki, Orderings of partitions Wikiversity, Lexicographic and colexicographic order EXAMPLE The sequence of all reversed partitions begins:   ()         (1,4)        (1,1,1,1,2)   (1)        (1,2,2)      (1,1,1,1,1,1)   (2)        (1,1,3)      (7)   (1,1)      (1,1,1,2)    (3,4)   (3)        (1,1,1,1,1)  (2,5)   (1,2)      (6)          (1,6)   (1,1,1)    (3,3)        (2,2,3)   (4)        (2,4)        (1,3,3)   (2,2)      (1,5)        (1,2,4)   (1,3)      (2,2,2)      (1,1,5)   (1,1,2)    (1,2,3)      (1,2,2,2)   (1,1,1,1)  (1,1,4)      (1,1,2,3)   (5)        (1,1,2,2)    (1,1,1,4)   (2,3)      (1,1,1,3)    (1,1,1,2,2) This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.                             0                            (1)                         (2) (1,1)                     (3) (1,2) (1,1,1)             (4) (2,2) (1,3) (1,1,2) (1,1,1,1)   (5) (2,3) (1,4) (1,2,2) (1,1,3) (1,1,1,2) (1,1,1,1,1) Showing partitions as their Heinz numbers (see A334435) gives:    1    2    3   4    5   6   8    7   9  10  12  16   11  15  14  18  20  24  32   13  25  21  22  27  30  28  36  40  48  64   17  35  33  26  45  50  42  44  54  60  56  72  80  96 128 MATHEMATICA revlensort[f_, c_]:=If[Length[f]!=Length[c], Length[f]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 28 19:33 EDT 2021. Contains 346335 sequences. (Running on oeis4.)