The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145511 Dirichlet g.f.: (1-2/2^s+7/4^s)*zeta(s)^3. 10
 1, 1, 3, 7, 3, 3, 3, 19, 6, 3, 3, 21, 3, 3, 9, 37, 3, 6, 3, 21, 9, 3, 3, 57, 6, 3, 10, 21, 3, 9, 3, 61, 9, 3, 9, 42, 3, 3, 9, 57, 3, 9, 3, 21, 18, 3, 3, 111, 6, 6, 9, 21, 3, 10, 9, 57, 9, 3, 3, 63, 3, 3, 18, 91, 9, 9, 3, 21, 9, 9, 3, 114, 3, 3, 18, 21, 9, 9, 3, 111, 15, 3, 3, 63, 9, 3, 9, 57, 3, 18, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Dirichlet convolution of [1,-2,0,7,0,0,0,0,...] and A007425. - R. J. Mathar, Feb 07 2011 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 J. S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices, Acta Cryst. A48 (1992), 500-508. See Table 1, Symmetry Fmmm. FORMULA From Amiram Eldar, Oct 25 2022: (Start) Multiplicative with a(2^e) = 3*(e-1)*e+1 and a(p^e) = (e+1)*(e+2)/2 if p > 2. Sum_{k=1..n} a(k) ~ (7/8)*n*log(n)^2 + c_1*n*log(n) + c_2*n, where c_1 = 21*gamma/4 - 5*log(2)/2 - 7/4 and c_2 = 7/4 + 21*gamma*(gamma-1)/4 - 15*gamma*log(2)/2 - 21*gamma_1/4 + 5*log(2)/2 + 3*log(2)^2, where gamma is Euler's constant (A001620) and gamma_1 is the 1st Stieltjes constant (A082633). (End) MAPLE read("transforms") : nmax := 100 : L := [1, -2, 0, 7, seq(0, i=1..nmax)] : MOBIUSi(%) : MOBIUSi(%) : MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017 MATHEMATICA f[p_, e_] := (e + 1)*(e + 2)/2; f[2, e_] := 3*(e - 1)*e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *) PROG (PARI) up_to = 65537; t1 = direuler(p=2, up_to, 1/(1-X)^3); t3 = direuler(p=2, 2, 1-2*X^1+7*X^2, up_to); v145511 = dirmul(t1, t3); A145511(n) = v145511[n]; \\ Antti Karttunen, Sep 27 2018, after R. J. Mathar's PARI-code for A158327 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 3*(f[i, 2]-1)*f[i, 2]+1, (f[i, 2]+1)*(f[i, 2]+2)/2)); } \\ Amiram Eldar, Oct 25 2022 CROSSREFS Cf. A007425, A145399, A145444, A145501, A158327, A158360. Cf. A001620, A082633. Sequence in context: A010623 A283245 A066065 * A242461 A065443 A198350 Adjacent sequences: A145508 A145509 A145510 * A145512 A145513 A145514 KEYWORD nonn,mult AUTHOR N. J. A. Sloane, Mar 14 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 23:50 EDT 2024. Contains 373391 sequences. (Running on oeis4.)