

A145444


Dirichlet g.f.: (1+3/4^s+2/8^s)*zeta(s)^3.


9



1, 3, 3, 9, 3, 9, 3, 21, 6, 9, 3, 27, 3, 9, 9, 39, 3, 18, 3, 27, 9, 9, 3, 63, 6, 9, 10, 27, 3, 27, 3, 63, 9, 9, 9, 54, 3, 9, 9, 63, 3, 27, 3, 27, 18, 9, 3, 117, 6, 18, 9, 27, 3, 30, 9, 63, 9, 9, 3, 81, 3, 9, 18, 93, 9, 27, 3, 27, 9, 27, 3, 126, 3, 9, 18, 27, 9, 27, 3, 117, 15, 9, 3, 81, 9, 9, 9, 63
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Dirichlet convolution of [1,0,0,3,0,0,0,2,0,0....] with A007425.  R. J. Mathar, Sep 25 2017


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000
J. S. Rutherford, The enumeration and symmetrysignificant properties of derivative lattices, Acta Cryst. A48 (1992), 500508. See Table 1, symmetry Cmmm.


MAPLE

nmax := 10000 :
L := [1, 0, 0, 3, 0, 0, 0, 2, seq(0, i=1..nmax)] :
MOBIUSi(%) :
MOBIUSi(%) :
MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017


PROG

(PARI) t1=direuler(p=2, 200, 1/(1X)^3)
t2=direuler(p=2, 2, 1+3*X^2+2*X^3, 200)
t3=dirmul(t1, t2)


CROSSREFS

Cf. A007425, A145501.
Sequence in context: A109932 A071909 A134662 * A165824 A256689 A266533
Adjacent sequences: A145441 A145442 A145443 * A145445 A145446 A145447


KEYWORD

nonn,mult


AUTHOR

N. J. A. Sloane, Mar 14 2009


STATUS

approved



