login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145444
Dirichlet g.f.: (1+3/4^s+2/8^s)*zeta(s)^3.
9
1, 3, 3, 9, 3, 9, 3, 21, 6, 9, 3, 27, 3, 9, 9, 39, 3, 18, 3, 27, 9, 9, 3, 63, 6, 9, 10, 27, 3, 27, 3, 63, 9, 9, 9, 54, 3, 9, 9, 63, 3, 27, 3, 27, 18, 9, 3, 117, 6, 18, 9, 27, 3, 30, 9, 63, 9, 9, 3, 81, 3, 9, 18, 93, 9, 27, 3, 27, 9, 27, 3, 126, 3, 9, 18, 27, 9, 27, 3, 117, 15, 9, 3, 81, 9, 9, 9, 63
OFFSET
1,2
COMMENTS
Dirichlet convolution of [1,0,0,3,0,0,0,2,0,0,...] with A007425. - R. J. Mathar, Sep 25 2017
LINKS
J. S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices, Acta Cryst. A48 (1992), 500-508. See Table 1, symmetry Cmmm.
FORMULA
From Amiram Eldar, Oct 25 2022: (Start):
Multiplicative with a(2^e) = 3*(e-1)*e+3 for e > 0, and a(p^e) = (e+1)*(e+2)/2 if p > 2.
Sum_{k=1..n} a(k) ~ n*log(n)^2 + c_1*n*log(n) + c_2*n, where c_1 = 6*gamma - 9*log(2)/4 - 2 and c_2 = 2 + 6*gamma*(gamma-1) - 27*gamma*log(2)/4 - 6*gamma_1 + 9*log(2)/4 + 21*log(2)^2/8, where gamma is Euler's constant (A001620) and gamma_1 is the 1st Stieltjes constant (A082633). (End)
MAPLE
nmax := 10000 :
L := [1, 0, 0, 3, 0, 0, 0, 2, seq(0, i=1..nmax)] :
MOBIUSi(%) :
MOBIUSi(%) :
MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017
MATHEMATICA
f[p_, e_] := (e + 1)*(e + 2)/2; f[2, e_] := 3*(e - 1)*e + 3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
PROG
(PARI) t1=direuler(p=2, 200, 1/(1-X)^3)
t2=direuler(p=2, 2, 1+3*X^2+2*X^3, 200)
t3=dirmul(t1, t2)
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 3*(f[i, 2]-1)*f[i, 2]+3, (f[i, 2]+1)*(f[i, 2]+2)/2)); } \\ Amiram Eldar, Oct 25 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Mar 14 2009
STATUS
approved