OFFSET
0,8
COMMENTS
T(n,m) is divisible by T(2,m) = A127473(n) for n >= 2, because if r and s are coprime to m, the sequence (x_1, ..., x_n) satisfies the conditions if and only if the sequence (r*s^0*x_1 mod m, ..., r*s^(n-1)*x_n mod m) does.
FORMULA
For fixed n, T(n,m) is multiplicative with T(n,p^e) = T(n,p)*p^(n*(e-1)).
T(n,m) = A353436(n,m) if m is prime.
T(3,m) = (m-1)^2*(m-2) = A045991(m-1) if m is prime.
T(4,m) = (m-1)^2*(m-2)^2 = A035287(m-1) if m is prime.
Empirically: T(5,m) = (m-1)^2*(m-3)*(m^2-4*m+5) if m >= 3 is prime.
T(n,2) = 0 for n >= 3.
T(n,3) = 0 for n >= 5.
T(n,5) = 0 for n >= 23.
EXAMPLE
Array begins:
n\m| 1 2 3 4 5 6 7 8 9 10
---+--------------------------------------
0 | 1 1 1 1 1 1 1 1 1 1
1 | 1 1 2 2 4 2 6 4 6 4
2 | 1 1 4 4 16 4 36 16 36 16
3 | 1 0 4 0 48 0 180 0 108 0
4 | 1 0 4 0 144 0 900 0 324 0
5 | 1 0 0 0 320 0 3744 0 0 0
6 | 1 0 0 0 720 0 15552 0 0 0
7 | 1 0 0 0 1312 0 54216 0 0 0
8 | 1 0 0 0 2400 0 189468 0 0 0
9 | 1 0 0 0 3232 0 550728 0 0 0
10 | 1 0 0 0 4560 0 1604088 0 0 0
11 | 1 0 0 0 4656 0 3895560 0 0 0
12 | 1 0 0 0 4928 0 9467856 0 0 0
13 | 1 0 0 0 4368 0 19185516 0 0 0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Pontus von Brömssen, Apr 21 2022
STATUS
approved