login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353435
Array read by descending antidiagonals: T(n,m) is the number of sequences of length n >= 0 with elements in 0..m-1 such that the Hankel matrix of any odd number of consecutive terms is invertible over the ring of integers modulo m >= 1.
2
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 0, 1, 1, 4, 4, 4, 0, 1, 1, 2, 16, 0, 4, 0, 1, 1, 6, 4, 48, 0, 0, 0, 1, 1, 4, 36, 0, 144, 0, 0, 0, 1, 1, 6, 16, 180, 0, 320, 0, 0, 0, 1, 1, 4, 36, 0, 900, 0, 720, 0, 0, 0, 1, 1, 10, 16, 108, 0, 3744, 0, 1312, 0, 0, 0, 1
OFFSET
0,8
COMMENTS
T(n,m) is divisible by T(2,m) = A127473(n) for n >= 2, because if r and s are coprime to m, the sequence (x_1, ..., x_n) satisfies the conditions if and only if the sequence (r*s^0*x_1 mod m, ..., r*s^(n-1)*x_n mod m) does.
FORMULA
For fixed n, T(n,m) is multiplicative with T(n,p^e) = T(n,p)*p^(n*(e-1)).
T(n,m) = A353436(n,m) if m is prime.
T(3,m) = (m-1)^2*(m-2) = A045991(m-1) if m is prime.
T(4,m) = (m-1)^2*(m-2)^2 = A035287(m-1) if m is prime.
Empirically: T(5,m) = (m-1)^2*(m-3)*(m^2-4*m+5) if m >= 3 is prime.
T(n,2) = 0 for n >= 3.
T(n,3) = 0 for n >= 5.
T(n,5) = 0 for n >= 23.
EXAMPLE
Array begins:
n\m| 1 2 3 4 5 6 7 8 9 10
---+--------------------------------------
0 | 1 1 1 1 1 1 1 1 1 1
1 | 1 1 2 2 4 2 6 4 6 4
2 | 1 1 4 4 16 4 36 16 36 16
3 | 1 0 4 0 48 0 180 0 108 0
4 | 1 0 4 0 144 0 900 0 324 0
5 | 1 0 0 0 320 0 3744 0 0 0
6 | 1 0 0 0 720 0 15552 0 0 0
7 | 1 0 0 0 1312 0 54216 0 0 0
8 | 1 0 0 0 2400 0 189468 0 0 0
9 | 1 0 0 0 3232 0 550728 0 0 0
10 | 1 0 0 0 4560 0 1604088 0 0 0
11 | 1 0 0 0 4656 0 3895560 0 0 0
12 | 1 0 0 0 4928 0 9467856 0 0 0
13 | 1 0 0 0 4368 0 19185516 0 0 0
CROSSREFS
Rows: A000012 (n=0), A000010 (n=1), A127473 (n=2).
Columns: A000012 (m=1), A130716 (m=2), A166926 (m=4 and m=6).
Sequence in context: A308121 A030424 A216656 * A295679 A287214 A287216
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved