Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Apr 26 2022 10:23:23
%S 1,1,1,1,1,1,1,2,1,1,1,2,4,0,1,1,4,4,4,0,1,1,2,16,0,4,0,1,1,6,4,48,0,
%T 0,0,1,1,4,36,0,144,0,0,0,1,1,6,16,180,0,320,0,0,0,1,1,4,36,0,900,0,
%U 720,0,0,0,1,1,10,16,108,0,3744,0,1312,0,0,0,1
%N Array read by descending antidiagonals: T(n,m) is the number of sequences of length n >= 0 with elements in 0..m-1 such that the Hankel matrix of any odd number of consecutive terms is invertible over the ring of integers modulo m >= 1.
%C T(n,m) is divisible by T(2,m) = A127473(n) for n >= 2, because if r and s are coprime to m, the sequence (x_1, ..., x_n) satisfies the conditions if and only if the sequence (r*s^0*x_1 mod m, ..., r*s^(n-1)*x_n mod m) does.
%F For fixed n, T(n,m) is multiplicative with T(n,p^e) = T(n,p)*p^(n*(e-1)).
%F T(n,m) = A353436(n,m) if m is prime.
%F T(3,m) = (m-1)^2*(m-2) = A045991(m-1) if m is prime.
%F T(4,m) = (m-1)^2*(m-2)^2 = A035287(m-1) if m is prime.
%F Empirically: T(5,m) = (m-1)^2*(m-3)*(m^2-4*m+5) if m >= 3 is prime.
%F T(n,2) = 0 for n >= 3.
%F T(n,3) = 0 for n >= 5.
%F T(n,5) = 0 for n >= 23.
%e Array begins:
%e n\m| 1 2 3 4 5 6 7 8 9 10
%e ---+--------------------------------------
%e 0 | 1 1 1 1 1 1 1 1 1 1
%e 1 | 1 1 2 2 4 2 6 4 6 4
%e 2 | 1 1 4 4 16 4 36 16 36 16
%e 3 | 1 0 4 0 48 0 180 0 108 0
%e 4 | 1 0 4 0 144 0 900 0 324 0
%e 5 | 1 0 0 0 320 0 3744 0 0 0
%e 6 | 1 0 0 0 720 0 15552 0 0 0
%e 7 | 1 0 0 0 1312 0 54216 0 0 0
%e 8 | 1 0 0 0 2400 0 189468 0 0 0
%e 9 | 1 0 0 0 3232 0 550728 0 0 0
%e 10 | 1 0 0 0 4560 0 1604088 0 0 0
%e 11 | 1 0 0 0 4656 0 3895560 0 0 0
%e 12 | 1 0 0 0 4928 0 9467856 0 0 0
%e 13 | 1 0 0 0 4368 0 19185516 0 0 0
%Y Cf. A035287, A045991, A350364, A353433, A353436.
%Y Rows: A000012 (n=0), A000010 (n=1), A127473 (n=2).
%Y Columns: A000012 (m=1), A130716 (m=2), A166926 (m=4 and m=6).
%K nonn,tabl
%O 0,8
%A _Pontus von Brömssen_, Apr 21 2022