login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295678
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 2, a(2) = 1, a(3) = 3.
1
1, 2, 1, 3, 6, 9, 13, 22, 37, 59, 94, 153, 249, 402, 649, 1051, 1702, 2753, 4453, 7206, 11661, 18867, 30526, 49393, 79921, 129314, 209233, 338547, 547782, 886329, 1434109, 2320438, 3754549, 6074987, 9829534, 15904521, 25734057, 41638578, 67372633, 109011211
OFFSET
0,2
COMMENTS
Lim_{n->inf} a(n)/a(n-1) = (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 2, a(2) = 1, a(3) = 3.
G.f.: (-1 - x + x^2 - x^3)/( (x^2+x-1)*(1+x^2)).
5*a(n) = A022098(n)+2*( A000034(n+1)*(-1)^floor(n/2)). - R. J. Mathar, Apr 26 2022
MATHEMATICA
LinearRecurrence[{1, 0, 1, 1}, {1, 2, 1, 3}, 100]
CROSSREFS
Sequence in context: A050043 A113396 A294284 * A057925 A086964 A076242
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 27 2017
STATUS
approved