login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295675
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 1, a(2) = 2, a(3) = -2.
1
1, 1, 2, -2, 0, 3, 3, 1, 4, 10, 14, 19, 33, 57, 90, 142, 232, 379, 611, 985, 1596, 2586, 4182, 6763, 10945, 17713, 28658, 46366, 75024, 121395, 196419, 317809, 514228, 832042, 1346270, 2178307, 3524577, 5702889, 9227466, 14930350, 24157816, 39088171
OFFSET
0,3
COMMENTS
Lim_{n->inf} a(n)/a(n-1) = (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 1, a(2) = 2, a(3) = -2.
G.f.: (-1 - x^2 + 5 x^3)/(-1 + x + x^3 + x^4).
MATHEMATICA
LinearRecurrence[{1, 0, 1, 1}, {1, 1, 2, -2}, 100]
CROSSREFS
Sequence in context: A048142 A071426 A288530 * A135356 A259016 A379225
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Nov 27 2017
STATUS
approved