login
A295672
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 1, a(2) = 1, a(3) = -2.
1
1, 1, 1, -2, 0, 2, 1, -1, 1, 4, 4, 4, 9, 17, 25, 38, 64, 106, 169, 271, 441, 716, 1156, 1868, 3025, 4897, 7921, 12814, 20736, 33554, 54289, 87839, 142129, 229972, 372100, 602068, 974169, 1576241, 2550409, 4126646, 6677056, 10803706, 17480761, 28284463
OFFSET
0,4
COMMENTS
Lim_{n->inf} a(n)/a(n-1) = (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 1, a(2) = 1, a(3) = -2.
G.f.: (-1 + 4 x^3)/(-1 + x + x^3 + x^4).
MATHEMATICA
LinearRecurrence[{1, 0, 1, 1}, {1, 1, 1, -2}, 100]
CROSSREFS
Sequence in context: A336915 A236627 A116664 * A308074 A024161 A035156
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Nov 27 2017
STATUS
approved