login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135356
Triangle T(n,k) read by rows: coefficients in the recurrence of sequences which equal their n-th differences.
13
2, 2, 0, 3, -3, 2, 4, -6, 4, 0, 5, -10, 10, -5, 2, 6, -15, 20, -15, 6, 0, 7, -21, 35, -35, 21, -7, 2, 8, -28, 56, -70, 56, -28, 8, 0, 9, -36, 84, -126, 126, -84, 36, -9, 2, 10, -45, 120, -210, 252, -210, 120, -45, 10, 0, 11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 2
OFFSET
1,1
COMMENTS
Sequences which equal their p-th differences obey recurrences a(n) = Sum_{s=1..p} T(p,s)*a(n-s).
This defines T(p,s) as essentially a signed version of a chopped Pascal triangle A014410, see A130785.
For cases like p=2, 4, 6, 8, 10, 12, 14, the denominator of the rational generating function of a(n) contains a factor 1-x; depending on the first terms in the sequences a(n), additional, simpler recurrences may exist if this cancels with a factor in the numerator. - R. J. Mathar, Jun 10 2008
LINKS
FORMULA
T(n,k) = (-1)^(k+1)*A007318(n, k). T(n,n) = 1 - (-1)^n.
Sum_{k=1..n} T(n, k) = 2.
From G. C. Greubel, Apr 09 2023: (Start)
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = 2*A051049(n-1).
Sum_{k=1..n-1} T(n, k) = (1 + (-1)^n).
Sum_{k=1..n-1} (-1)^(k-1)*T(n, k) = A000225(n-1).
T(2*n, n) = (-1)^(n-1)*A000984(n), n >= 1. (End)
EXAMPLE
Triangle begins with row n=1:
2;
2, 0;
3, -3, 2;
4, -6, 4, 0;
5, -10, 10, -5, 2;
6, -15, 20, -15, 6, 0;
7, -21, 35, -35, 21, -7, 2;
8, -28, 56, -70, 56, -28, 8, 0;
9, -36, 84, -126, 126, -84, 36, -9, 2;
MAPLE
T:= (p, s)-> `if`(p=s, 2*irem(p, 2), (-1)^(s+1) *binomial(p, s)):
seq(seq(T(p, s), s=1..p), p=1..11); # Alois P. Heinz, Aug 26 2011
MATHEMATICA
T[p_, s_]:= If[p==s, 2*Mod[s, 2], (-1)^(s+1)*Binomial[p, s]];
Table[T[p, s], {p, 12}, {s, p}]//Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
PROG
(Magma)
A135356:= func< n, k | k eq n select 1-(-1)^n else (-1)^(k+1)*Binomial(n, k) >;
[A135356(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 09 2023
(SageMath)
def A135356(n, k):
if (k==n): return 2*(n%2)
else: return (-1)^(k+1)*binomial(n, k)
flatten([[A135356(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Apr 09 2023
CROSSREFS
Related sequences: A000079 (n=1), A131577 (n=2), (A131708 , A130785, A131562, A057079) (n=3), (A000749, A038503, A009545, A038505) (n=4), A133476 (n=5), A140343 (n=6), A140342 (n=7).
Sequence in context: A071426 A288530 A295675 * A259016 A379225 A216504
KEYWORD
sign,tabl
AUTHOR
Paul Curtz, Dec 08 2007, Mar 25 2008, Apr 28 2008
EXTENSIONS
Edited by R. J. Mathar, Jun 10 2008
STATUS
approved