OFFSET
1,1
COMMENTS
Sequences which equal their p-th differences obey recurrences a(n) = Sum_{s=1..p} T(p,s)*a(n-s).
This defines T(p,s) as essentially a signed version of a chopped Pascal triangle A014410, see A130785.
For cases like p=2, 4, 6, 8, 10, 12, 14, the denominator of the rational generating function of a(n) contains a factor 1-x; depending on the first terms in the sequences a(n), additional, simpler recurrences may exist if this cancels with a factor in the numerator. - R. J. Mathar, Jun 10 2008
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
FORMULA
T(n,k) = (-1)^(k+1)*A007318(n, k). T(n,n) = 1 - (-1)^n.
Sum_{k=1..n} T(n, k) = 2.
From G. C. Greubel, Apr 09 2023: (Start)
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = 2*A051049(n-1).
Sum_{k=1..n-1} T(n, k) = (1 + (-1)^n).
Sum_{k=1..n-1} (-1)^(k-1)*T(n, k) = A000225(n-1).
T(2*n, n) = (-1)^(n-1)*A000984(n), n >= 1. (End)
EXAMPLE
Triangle begins with row n=1:
2;
2, 0;
3, -3, 2;
4, -6, 4, 0;
5, -10, 10, -5, 2;
6, -15, 20, -15, 6, 0;
7, -21, 35, -35, 21, -7, 2;
8, -28, 56, -70, 56, -28, 8, 0;
9, -36, 84, -126, 126, -84, 36, -9, 2;
MAPLE
T:= (p, s)-> `if`(p=s, 2*irem(p, 2), (-1)^(s+1) *binomial(p, s)):
seq(seq(T(p, s), s=1..p), p=1..11); # Alois P. Heinz, Aug 26 2011
MATHEMATICA
T[p_, s_]:= If[p==s, 2*Mod[s, 2], (-1)^(s+1)*Binomial[p, s]];
Table[T[p, s], {p, 12}, {s, p}]//Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
PROG
(Magma)
A135356:= func< n, k | k eq n select 1-(-1)^n else (-1)^(k+1)*Binomial(n, k) >;
[A135356(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 09 2023
(SageMath)
def A135356(n, k):
if (k==n): return 2*(n%2)
else: return (-1)^(k+1)*binomial(n, k)
flatten([[A135356(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Apr 09 2023
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul Curtz, Dec 08 2007, Mar 25 2008, Apr 28 2008
EXTENSIONS
Edited by R. J. Mathar, Jun 10 2008
STATUS
approved